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Abstract
In this thesis we investigate a number of problems related to 2-level polytopes, in particular

regarding their combinatorial structure and extension complexity. 2-level polytopes have

been introduced as a generalization of stable set polytopes of perfect graphs, and despite their

apparently simple structure, are at the center of many open problems: these include connec-

tion with communication complexity and the separation between linear and semidefinite

programming. The extension complexity of a polytope P is a measure of the complexity of

representing P : it is the smallest size of an extended formulation of P , which in turn is a linear

description of a polyhedron that projects down to P .

In the first chapter we introduce the main concepts that will be used through the thesis and

we motivate our interest in 2-level polytopes.

In the second chapter we examine several classes of 2-level polytopes arising in combinatorial

settings and we prove a relation between the number of vertices and facets of such polytopes,

which is conjectured to hold for all 2-level polytopes. The proofs are obtained through an

improved understanding of the combinatorial structure of such polytopes, which in some

cases leads to results of independent interest.

In the third chapter we study the extension complexity of a restricted class of 2-level polytopes,

the stable set polytopes of bipartite graphs, for which we obtain improved lower and upper

bounds.

In the fourth chapter we study slack matrices of 2-level polytopes, important combinatorial

objects related to extension complexity, defining operations on them and giving algorithms

for the following recognition problem: given a matrix, determine whether it is a slack matrix

of some special class of 2-level polytopes.

In the fifth chapter we address the problem of explicitly obtaining small size extended formu-

lations whose existence is guaranteed by communication protocols. In particular we give an

output-efficient algorithm to write down extended formulations for the stable set polytope of

perfect graphs, making a well known result by Yannakakis constructive, and we extend this to

all deterministic protocols.

We then conclude the thesis outlining the main open questions that stem from our work.

Keywords: Polytopes, polyhedral combinatorics, 2-level, extension complexity, vertices, facets,

slack matrix.
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Sommario
In questa tesi vengono trattati diversi problemi sui politopi "2-level", in particolare sulla loro

struttura combinatoria e complessità di estensione. Tali politopi sono una generalizzazione

di politopi che derivano dagli insiemi indipendenti nei grafi perfetti, e, nonostante la loro

struttura apparentemente semplice, sono al centro di molti problemi aperti che spaziano dalla

complessità computazionale alla programmazione semidefinita. La complessità di estensione

di un politopo P è una misura della complessità nel rappresentare P : è la minima dimensione

di una formulazione estesa di P , che a sua volta è una descrizione lineare di un poliedro di cui

P è la proiezione.

Nel primo capitolo vengono introdotti i politopi 2-level e i concetti principali che verran-

no usati nella tesi, e vengono descritte le principali motivazioni dell’interesse verso questi

politopi.

Nel secondo capitolo vengono esaminate diverse classi di politopi 2-level che appaiono in

contesti combinatori, e viene provata una relazione tra il numero di faccette e di vertici di tali

politopi. Congetturiamo che tale relazione valga per tutti i politopi 2-level. Le dimostrazioni

vengono ottenute tramite una migliore comprensione della struttura combinatoria di tali

politopi, che a volte porta a risultati interessanti a prescindere dalla congettura.

Nel terzo capitolo studiamo la complessità di estensione di una particolare classe di politopi

2-level, derivante dagli insiemi indipendenti dei grafi bipartiti, di cui miglioriamo il limite

inferiore e superiore.

Nel quarto capitolo studiamo le matrici di slack dei politopi 2-level, importanti oggetti combi-

natori collegati alla complessità di estensione, definiamo operazioni su tali matrici e diamo

algoritmi per il seguente problema: data una matrice, determinare se è una matrice di slack di

una certa classe di politopi 2-level.

Nel quinto capitolo affrontiamo il problema di ottenere formulazioni estese compatte ed espli-

cite, quando l’esistenza di tali formulazioni è dimostrata tramite protocolli di comunicazione.

In particolare diamo un algoritmo per ottenere una formulazione estesa del politopo degli

insiemi indipendenti dei grafi perfetti, rendendo costruttivo un noto risultato di Yannakakis.

Il risultato è abbastanza generale da essere applicabile a tutti i protocolli deterministici.

La tesi si conclude con una discussione delle principali direzioni di ricerca che scaturiscono

dal nostro lavoro.

Parole chiave: politopi, 2-level, formulazioni estese, vertici, faccette, matrice di slack.
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1 Introduction

A classical, powerful approach in discrete optimization is to represent the feasible solutions

of a problem as vertices of a polytope and to use linear programming to find the optimal

vertex. Hence, a solid mathematical understanding of polytopes associated to combinatorial

problems is a fundamental goal of the modern theory of optimization. In this thesis we

study a number of problems concerning a particular class of polytopes, called 2-level. Such

polytopes have an apparently simple structure and appear in several different contexts; yet,

our understanding of them is relatively poor. This makes them fascinating objects, especially

from the point of view of optimization.

Definition 1.1. A polytope P ⊂Rd is called 2-level if, for any supporting hyperplane H defining

a facet F , there is a hyperplane parallel to H that contains all the vertices of P that are not in F .

Figure 1.1 – The first three polytopes (the simplex, the cross-polytope and the cube) are 2-level.
The fourth one is not 2-level, because of the highlighted facet.

2-level polytopes naturally arise in many areas of mathematics, and they were defined inde-

pendently in at least two different contexts:

• Sum of squares and polynomial ideals: in [43] the Theta body of the real variety of an

ideal is introduced as a relaxation based on sum of squares, and 2-level polytopes are

defined as those polytopes for which this relaxation is exact.

• Statistics: in [93] a polytope is called compressed if all its pulling triangulations are

1



Chapter 1. Introduction

unimodular with respect to the lattice generated by the vertices, and in [94] this property

is shown to be equivalent to being 2-level.

The property of 2-levelness, although quite strong, is satisfied by several classes of polytopes:

Birkhoff [101], Hanner [54], order polytopes [92], spanning tree polytopes of series-parallel

graphs [48], stable matching polytopes [52], and most importantly stable set polytopes of

perfect graphs [43], which are discussed below. It is not a coincidence that the aforementioned

polytopes have 0/1 vertices: in [43] it is shown that each 2-level polytope is affinely isomorphic

to a 0/1 polytope (i.e. a polytope whose vertices have 0/1 coordinates). This implies that there

is a finite number of (equivalence classes of) 2-level polytopes of a given dimension d , in

particular at most 22d
. However, 2-level polytopes seem to form a very restricted and in some

sense well-behaved subclass of 0/1 polytopes. For instance, it is not hard to see that every

face of a 2-level polytope is again 2-level. Using this and other structural results, in [10] an

algorithm is given for enumerating 2-level polytopes, and a complete enumeration is done

up to dimension 6 (this was extended to dimension 7 and 8 in subsequent versions [11, 76]).

In the paper it is argued that for general 0/1 polytopes such a task is not practically feasible,

as with the current computational power one cannot even store all the equivalence classes

already for dimension 6. This enumeration showed that already in low dimensions there are

many 2-level polytopes that do not have an immediate combinatorial interpretation and are

outside the classes described above, suggesting that an understanding of all 2-level polytopes

that goes beyond the special cases is desirable. Based on their experimental evidence, the

authors of [11] conjectured that the number of 2-level polytopes of dimension d is at most

2poly(d). This was recently proved in [32], where an upper bound of 2O(d 2 logd) has been given,

together with an almost-matching lower bound of 2Ω(d 2).

While 2-level polytopes seem to be a "small" class, there are many open questions about

them. In particular we now define a parameter that is a current theme of this thesis for its

relation to 2-level polytopes, namely extension complexity. In the context of optimization, it is

crucial to have compact representations of our polytopes of interest. Obtaining our polytope

P as a projection of a higher dimensional polyhedron Q can drastically reduce the size of the

representation and make the problem of optimizing over P efficiently solvable.

Definition 1.2. Let P ∈ Rn be a polytope. A polyhedron Q ⊆ Rp is an extension of P if there

exists an affine map π : Rp → Rd with π(Q) = P . An extended formulation of P is a linear

description of an extension of a P , and the extension complexity of P (denoted by xc(P )) is

the smallest number of facets of any extension of P (equivalently, the smallest number of

inequalities in any extended formulation of P ).

One can also consider semidefinite extended formulations: in this case Q, instead of a polyhe-

dron, is an affine slice of the semidefinite cone, again with the requirement that the projection

on the original space is P , and the semidefinite extension complexity of P is the minimum

dimension of the semidefinite cone in any such Q. Although semidefinite programming can

be seen as a generalization of linear programming and it is solvable in polynomial time up

2



to arbitrary precision by interior point methods, in practice solving linear programs is more

efficient and preferable (see for instance [69]). Hence there is interest in finding small (linear)

extended formulations even when semidefinite formulations are already given, which is the

case for 2-level polytopes.

One of the reasons of interest in the extension complexity of 2-level polytopes comes from

the fact that they were introduced as a generalization of stable set polytopes of perfect graphs.

The class of perfect graphs has received much attention in the literature since the 1960s, when

Berge introduced them and formulated a conjecture on them [8]. After more than forty years

of partial results this conjecture was proved by Chudnovsky, Robertson, Seymour and Thomas,

under the name of Strong Perfect Graph Theorem [15]. Perfect graphs have quite special

properties in terms of their cliques and stable sets (also called independent sets). In particular

they can be characterized in terms of their stable set polytope, which has the following simple

(yet exponential in size) description:

STAB(G) =
{

x ∈Rd
+ :

∑
v∈C

xv ≤ 1 for all maximal cliques C of G

}
,

where G is a perfect graph on d vertices. From this description (due to Chvátal, [16]) it is easy

to see that this polytope is 2-level: indeed, for any vertex x and for any clique C the quantity∑
v∈C xv can be either 0 or 1, giving two parallel hyperplanes that contain all the vertices for

every facet defining direction. Moreover it can be shown that, for a graph G , STAB(G) is 2-level

if and only if G is perfect [43].

In [73] Lovász introduced the Theta body of a graph G as a convex body that approximates

STAB(G). If G has n vertices, its Theta body can be expressed by a semidefinite program of size

n+1, and if G is perfect, its Theta body is an exact semidefinite formulation of STAB(G), hence

we can efficiently find a maximum weight stable set in G using semidefinite programming. To

find a purely combinatorial algorithm for this problem is the most important open question

on perfect graphs. Thirty years later, in [43], the concept of Theta body was extended to define

a hierarchy of semidefinite relaxations (the k-th Theta body, with k a positive integer) to

approximate the convex hull of any set of points. As already mentioned, 2-level polytopes can

be characterized as those polytopes for which the first level of this hierarchy is exact, i.e. in

particular they have small semidefinite extension complexity. This implies that, in principle,

one can optimize over these polytopes in polynomial time using semidefinite programming,

generalizing Lovász’s result to all 2-level polytopes. The question left open is whether we can

achieve the same using linear programming only, i.e. what is the extension complexity of

2-level polytopes. Whereas in general the best upper bound known is superpolynomial in

the dimension ([75]), for stable set polytopes of perfect graphs a quasipolynomial bound was

given by Yannakakis (see Theorem 5.4, or [100]). Whether this is tight or can be improved

to a polynomial bound is a prominent open question, as it is open whether the bound can

be extended to all 2-level polytopes. Moreover, it is not known (see [35]) whether there is

a polytope with exponential (or superpolynomial) extension complexity and polynomial

3



Chapter 1. Introduction

semidefinite extension complexity. This is a fundamental question: how much more powerful

is semidefinite programming than linear programming? This has been answered in some

cases: for instance, semidefinite programming gives a better approximation ratio for the

Max-Cut problem than any known linear program (see [40]) and this extends to more general

settings (see the superiority of Lasserre hierarchy over Sherali-Adams [71]). 2-level polytopes

are perfect candidates to answer this question, as they have compact semidefinite complexity,

but might have superpolynomial extension complexity.

In [100], Yannakakis showed that extension complexity of a polytope is captured by its slack

matrix, defined as follows:

Definition 1.3. Given a polytope P described as P = conv(v1, . . . , vn) = {x ∈Rd : Ax ≤ b}, where

A has m rows, the slack matrix S(P ) is a non-negative m ×n matrix with S(P )i , j = bi −a>
i v j ,

i.e., the (i , j )-th entry is the slack of point j with respect to the i -th inequality.

Notice that the slack matrix of a given polytope is not uniquely determined as it depends on

the vertical (also called inner) and horizontal (outer) representation that we choose. However

in most cases the properties of interest of such matrices do not depend on the representation,

hence it makes sense to refer to the slack matrix of a polytope. Slack matrices have interesting

geometrical properties and the problem of determining whether a given matrix is a slack

matrix is equivalent to the Polyhedral Verification problem, whose computational complexity

is unknown [47]. Notice that, as a direct consequence of Definition 1.1, 2-level polytopes can

be characterized as those polytopes having the “simplest" slack matrices.

Observation 1.4. Let P be a polytope, then P is 2-level if and only if it admits a slack matrix

with 0/1 entries only.

Yannakakis’ work relates the extension complexity of a polytope to nonnegative factorizations

of its slack matrix. The nonnegative rank of M is the smallest intermediate dimension in a

nonnegative factorization of M , i.e. the smallest r such that there exist T ∈ Rm×r
≥0 ,U ∈ Rr×n

≥0

with M = TU .

Theorem 1.5. [100] Given a polytope P of dimension at least 1 and its slack matrix S, the

extension complexity of P is equal to the nonnegative rank of S.

Yannakakis’ Theorem allows to study extension complexity with tools from linear algebra and

combinatorics. This, as we will describe in Chapter 5, implies a beautiful connection between

extension complexity and communication complexity: the latter field aims at understanding

the amount of information that needs to be exchanged between two parties in order to com-

pute a matrix given as input. This matrix usually expresses a predicate and is 0/1, in particular

the log-rank conjecture, a fundamental open problem in the field, is concerned with the deter-

ministic communication complexity of such matrices (we refer to [75] for more details). In

light of Observation 1.4, 2-level polytopes are directly related to the log-rank conjecture. If true,

4



the conjecture would imply that the extension complexity of a d-dimensional 2-level polytope

is at most 2polylog(d), hence quasipolynomial. The best bound that is currently known is 2O(
p

d),

and it is implied by the work of Lovett [75] on the log-rank conjecture. This means that, while

no 2-level polytope can have exponential extension complexity, it might be possible to prove a

lower bound of the kind 2Ω(nc ) for some c ≤ 1/2. A 2-level polytope exhibiting such a bound

would refute the log-rank conjecture.

For the reasons cited above, finding upper and lower bounds on the extension complexity of

2-level polytopes is a problem of prominent interest, arguably one of the biggest problems

that are left open in the field. The major obstacle is that we lack a complete understanding of

2-level polytopes, of their combinatorial properties and geometric structure. In this thesis we

investigate a number of problems related to 2-level polytopes, their slack matrices and their

extension complexity, with a two-fold aim: to give contributions to the open questions cited

so far; to expand our current knowledge on 2-level polytopes and propose new perspectives

and tools for their study. Although the problems that we examine usually focus on special

classes of 2-level polytopes, arising from combinatorial objects like graphs and matroids, we

hope that some of techniques used can be extended to more general settings. On the way to

our proofs, we also give contributions whose interest goes beyond 2-level polytopes: most

notably we obtain results on the number of cliques and stable sets in a graph (Section 2.3), on

the structure of the matroid base polytope (Sections 2.4.2, 4.5), on a combinatorial problem

related to the spanning tree polytope (Section 3.6) and on extended formulations of general

polytopes (Chapter 5).

The rest of the thesis is organized as follows:

• In Chapter 2, we examine a conjecture posed in [10] on the number of vertices and facets

of 2-level polytopes and prove that it holds for many classes of 2-level polytopes coming

from combinatorial settings. In doing so, we obtain a number of results which shed light

on the structure of some 2-level polytopes, most notably stable marriage polytopes and

matroid polytopes. The content of this chapter is joint work with Alfonso Cevallos and

Yuri Faenza, and it has appeared, with some modifications, in [2] and [1].

• In Chapter 3, we study the extension complexity of stable set polytopes of bipartite

graphs. In particular we derive the first non-trivial lower bound on the extension

complexity of such polytopes, which is also the first lower bound for general 2-level

polytopes. We show that our lower bound cannot be improved by using our technique,

and in doing so we outline a connection with the extension complexity of the spanning

tree polytope. The content of this chapter is joint work with Yuri Faenza, Samuel Fiorini,

Tony Huynh, Marco Macchia and appears in [3], except for Section 3.6, which is joint

work with Jana Cslovjecsek.

• In Chapter 4, we study 0/1 slack matrices, i.e. slack matrices of 2-level polytopes, and the

algorithmic problem of recognizing such matrices efficiently. In particular we introduce

some operations on slack matrices that preserve 2-levelness and allow, thanks to a
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Chapter 1. Introduction

decomposition approach, to recognize slack matrices of 2-level matroid polytopes. The

content of this chapter is joint work with Michele Conforti, Yuri Faenza, Samuel Fiorini,

Tony Huynh, Marco Macchia.

• In Chapter 5 we examine the algorithmic problem of obtaining extended formulations

in output-efficient time, when the existence of such formulation is guaranteed by a

communication protocol. In particular we focus on the stable set polytope of perfect

graphs and we turn Yannakakis’ quasipolynomial bound, mentioned above, into a

quasipolynomial time algorithm. We also extend this to the more general setting of

deterministic protocols, going beyond 2-level polytopes. This is joint work with Yuri

Faenza and Mihalis Yannakakis.

• In Chapter 6 we conclude by describing further research directions and open questions

left by our work.

1.1 Preliminaries

We let R+ be the set of nonnegative real numbers. For a set S and an element e, we denote by

A+e and A−e the sets A∪ {e} and A \ {e}, respectively. For a point x ∈RI , where I is an index

set, and a subset J ⊆ I , we let x(J ) =∑
i∈J xi .

For a polytope P ∈Rd , we denote by fk (P ) the number of k-dimensional faces of P . The polar

of P is the polyhedron P4 = {y ∈ Rd : y · x ≤ 1∀ x ∈ P }. It is well known1 that, if P ⊆ Rd is a

d-dimensional polytope with the origin in its interior, then so is P4, and one can define a

one-to-one mapping between vertices (resp. facets) of P and facets (resp. vertices) of P4. The

d-dimensional cube is [−1,1]d , and the d-dimensional cross-polytope is its polar.

One of the most common operation with polytopes is the Cartesian product. Given two

polytopes P1 ⊆ Rd1 , P2 ⊆ Rd2 , their Cartesian product is P1 ×P2 = {(x, y) ∈ Rd1+d2 : x ∈ P1, y ∈
P2}.

1It immediately follows from e.g. [101, Theorem 2.11].
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2 On vertices and facets of 2-level polytopes
arising in combinatorial settings

2.1 Introduction

In this chapter we present a polyhedral study of 2-level polytopes arising from combinatorial

settings. In particular, the number of vertices and facets of such polytopes is studied. Each

d-dimensional 2-level polytope is affinely isomorphic to a 0/1 polytope [43], hence it has at

most 2d vertices. Interestingly, the authors of [43] also showed that a d-dimensional 2-level

polytope also has at most 2d facets. This makes 2-level polytopes quite different from “random”

0/1 polytopes, that have (d/logd)Θ(d) facets [7]. Experimental results from [10, 76] suggest

that this separation could be even stronger: up to d = 8, the product of the number of facets

fd−1(P ) and the number of vertices f0(P ) of a d-dimensional 2-level polytope P does not

exceed d2d+1. In [10], it is asked whether this always holds, and in their journal version the

question is turned into a conjecture.

Conjecture 2.1 (Vertex/facet trade-off). Let P be a d-dimensional 2-level polytope. Then

f0(P ) fd−1(P ) ≤ d2d+1.

Moreover, equality is achieved if and only if P is affinely isomorphic to the cross-polytope or

the cube.

It is immediate to check that the cube and the cross-polytope (its polar) indeed verify f0(P ) fd−1(P ) =
d2d+1. Conjecture 2.1 has an interesting interpretation as an upper bound on the “size” of slack

matrices of 2-level polytopes, since f0(P ) (resp. fd−1(P )) is the number of columns (resp. rows)

of the (smallest) slack matrix of P . Many fundamental results on linear extensions of polytopes

are based on properties of their slack matrices. We believe that advancements on Conjecture

2.1 may lead to precious insights on the structure of (the slack matrices of) 2-level polytopes,

similarly to how progresses on e.g. the outstanding Hirsch [88] and 3d conjectures for centrally

symmetric polytopes [62] shed some light on our general understanding of polytopes.

Contribution and organization.

The main results of this chapter are the following:
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Chapter 2. On vertices and facets of 2-level polytopes arising in combinatorial settings

• We give considerable evidence supporting Conjecture 2.1 by proving it for several classes

of 2-level polytopes arising in combinatorial settings. These include polytopes coming

from graphs (stable set, Hansen, and stable matching polytopes), from posets (Order,

Chain and double order polytopes) and from matroids (base matroid and cycle poly-

topes) and Birkhoff, Hanner and min up-down polytopes. We refer to the following

sections for relevant definitions and references.

• We establish new properties of many classes of 2-level polytopes, of their underlying

combinatorial objects, and of their inter-class connections. These results include: a

trade-off formula for the number of stable sets and cliques in a graph; a description of the

stable matching polytope as an affine projection of the order polytope of the associated

rotation poset; a non-redundant characterization of facet-defining inequalities for base

polytopes of matroids under the 2-sum operation; and a compact linear description of

2-level base polytopes of matroids in terms of cuts of some trees associated to those

matroids (notably, our description has linear size in the dimension and can be written

down explicitly in polynomial time). These results simplify the algorithmic treatment of

some of these polytopes, as well as provide a deeper combinatorial understanding of

them. At a more philosophical level, these examples suggest that being 2-level is a very

attractive feature for a (combinatorial) polytope, since it seems to imply a well-behaved

underlying structure.

• We moreover show examples of 0/1 polytopes with a simple structure (including span-

ning tree and forest polytopes) that are not 2-level and do not satisfy Conjecture 2.1.

This suggests that, even though there are clearly polytopes that are not 2-level and

satisfy Conjecture 2.1, 2-levelness seem to be the “correct” hypothesis to prove a general

positive result. We also investigate extensions of the conjecture in terms of matrices and

systems of linear inequalities.

We introduce some basic definitions and techniques in Section 2.2: those are enough to

show that Conjecture 2.1 holds for Birkhoff and Hanner polytopes. In Section 2.3, we first

prove an upper bound on the product of the number of stable sets and cliques of a graph

(see Theorem 2.5). We then prove Conjecture 2.1 for stable set polytopes of perfect graphs,

Hansen polytopes, min up-down polytopes, order, double order and chain polytopes of posets,

and stable matching polytopes, by reducing these results to statements on stable sets and

cliques of associated graphs, which are also proved in Section 2.3. Hence, we call all those

graphical 2-level polytopes. Of particular interest is our observation that stable matching

polytopes are affine equivalent to order polytopes (see Theorem 2.18). In Section 2.4, we study

2-level matroid base polytopes, and prove that Conjecture 2.1 for this class (see Theorem

2.26). The section also includes results on base polytopes of general matroids (see Theorem

2.30, Corollary 2.31), which we believe of independent interest. Using this results, we derive a

compact description of 2-level base polytopes of matroids (see Theorem 2.35). In Section 2.5,

we prove the conjecture for the cycle polytopes of certain binary matroids, which generalizes
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all cut polytopes that are 2-level. In Section 2.6, we investigate possible extensions of the

conjecture.

2.2 Basics

Let P ∈Rd a polytope, and P4 its polar, as defined in Section 1.1. Since f0(P ) = fd−1(P4), and

f0(P4) = fd−1(P ), a polytope and its polar will simultaneously satisfy or not satisfy Conjecture

2.1. Recall that a 0/1 polytope is the convex hull of a subset of the vertices of {0,1}d . The

following facts will be used many times:

Lemma 2.2. [43] Let P be a 2-level polytope of dimension d. Then

1. f0(P ), fd−1(P ) ≤ 2d .

2. Any face of P is again a 2-level polytope.

As a preliminary observation we show that the operation of Cartesian product preserves

2-levelness and the bound of Conjecture 2.1.

Lemma 2.3. Two polytopes P1,P2 are 2-level if and only if their Cartesian product P1 ×P2 is

2-level. Moreover, if two 2-level polytopes P1 and P2 satisfy Conjecture 2.1, then so does P1 ×P2.

Proof. The first part follows immediately from the fact that P1 = {x : A(1)x ≤ b(1)}, P2 = {y :

A(2) y ≤ b(2)}, then P1 ×P2 = {(x, y) : A(1)x ≤ b(1); A(2) y ≤ b(2)}, and that the vertices of P1 ×P2

are exactly the points (x, y) such that x is a vertex of P1 and y a vertex of P2.

For the second part, let P = P1 × P2, d1 = d(P1), d2 = d(P2). Then it is well known that

d(P ) = d1 +d2, f0(P ) = f0(P1) f0(P2), and fd−1(P ) = fd1−1(P1)+ fd2−1(P2). We conclude

f0(P ) fd−1(P ) = f0(P1) fd1−1(P1) f0(P2)+ f0(P2) fd2−1(P2) f0(P1)

≤ d12d1+d2+1 +d22d1+d2+1

= d(P )2d(P )+1,

where the inequality follows by induction and from Lemma 2.2. Suppose now that P satisfies

the bound with equality. Then, for i = 1,2, Pi also satisfies the bound with equality and

f0(Pi ) = 2d(Pi ), which means that Pi is a di -dimensional cube. Then P is a d-dimensional

cube. �

2.2.1 Hanner and Birkhoff polytopes

We start off with two easy examples. Hanner polytopes [53] are defined as the smallest family

that contains the [−1,1] segment of dimension 1, and is closed under taking polars and
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Chapter 2. On vertices and facets of 2-level polytopes arising in combinatorial settings

Cartesian products. That they verify the conjecture immediately follows from Lemma 2.3

and from the discussion on polars earlier in Section 2.2. The Birkhoff polytope Bn ⊂ Rn2
is

the convex hull of all n ×n permutation matrices (see e.g. [101]). For n = 2, the polytope B2

is affinely isomorphic to the Hanner polytope of dimension 1. For n ≥ 3, Bn is known [101]

to have exactly n! vertices, n2 facets, dimension (n − 1)2, and is 2-level. We conclude the

following.

Lemma 2.4. Hanner and Birkhoff polytopes satisfy Conjecture 2.1.

2.3 Graphical 2-Level Polytopes

We present a general result on the number of cliques and stable sets of a graph. Proofs of all

theorems from the current section will be based on it.

Theorem 2.5 (Stable set/clique trade-off). Let G = (V ,E ) be a graph on n vertices, C its family

of non-empty cliques, and S its family of non-empty stable sets. Then

|C ||S | ≤ n(2n −1).

Moreover, equality is achieved if and only if G or its complement is a clique.

Proof. Consider the function f : C ×S → 2V , where f (C ,S) = C ∪ S. For a set W ⊂ V , we

bound the size of its pre-image f −1(W ). If W is a singleton, the only pair in its pre-image is

(W,W ). For |W | ≥ 2, we claim that | f −1(W )| ≤ 2|W |.

There are at most |W | intersecting pairs (C ,S) in f −1(W ). This is because the intersection

must be a single element, C ∩S = {v}, and once it is fixed every element adjacent to v must be

in C , and every other element must be in S.

There are also at most |W | disjoint pairs in f −1(W ), as we prove now. Fix one such disjoint

pair (C ,S), and notice that both C and S are non-empty proper subsets of W . All other disjoint

pairs (C ′,S′) are of the form C ′ =C \ A∪B and S′ = S \B∪A, where A ⊆C , B ⊆ S, and |A|, |B | ≤ 1.

Let X (resp. Y ) denote the set formed by the vertices of C (resp. S) that are anticomplete to S

(resp. complete to C ). Clearly, either X or Y is empty. We settle the case Y =;, the other being

similar. In this case ; 6= A ⊆ X , so X 6= ;. If X = {v}, then A = {v} and we have |S|+1 choices

for B , with B =; possible only if |C | ≥ 2, because we cannot have C ′ =;. This gives at most

1+|S|+ |C |−1 ≤ |W | disjoint pairs (C ′,S′) in f −1(W ). Otherwise, |X | ≥ 2 forces B =;, and the

number of such pairs is at most 1+|X | ≤ 1+|C | ≤ |W |.

We conclude that | f −1(W )| ≤ 2|W |, or one less if W is a singleton. Thus

|C ×S | ≤
n∑

k=0
2k

(
n

k

)
−n = n2n −n,

where the (known) fact
∑n

k=0 2k
(n

k

)= n2n holds since
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2.3. Graphical 2-Level Polytopes

n2n =
n∑

k=0
(k + (n −k))

(
n

k

)
=

n∑
k=0

k

(
n

k

)
+ (n −k)

(
n

n −k

)
= 2

n∑
k=0

k

(
n

k

)
.

The bound is clearly tight for G = Kn and G = Kn . For any other graph, there is a subset W of

3 vertices that induces 1 or 2 edges. In both cases, | f −1(W )| = 5 < 2|W |, hence the bound is

loose. �

Corollary 2.6. Let G, C and S be as in Theorem 2.5, and C ′ =C ∪ {;} and S ′ =S ∪ {;} be

the families of (possibly empty) cliques and stable sets of G, respectively. Then

|C ′||S ′| ≤ (n +1)2n ,

and equality is achieved if and only if G or its complement is a clique.

Proof. We apply the previous inequality to obtain

|C ′||S ′| = (|C |+1)(|S |+1) = |C ||S |+ (|C |+ |S ′|)
≤ n(2n −1)+ (|C ∪S ′|+ |C ∩S ′|)
≤ n(2n −1)+ (2n +n) = (n +1)2n .

Clearly the inequality is tight whenever G or its complement is a clique, and from Theorem 2.5,

we know that it is loose otherwise. �

2.3.1 Stable set polytopes of perfect graphs

For a graph G = (V ,E), its stable set polytope STAB(G) is the convex hull of the incidence

vectors of the stable sets of G . We recall that STAB(G) is 2-level if and only if G is a perfect

graph [43], or equivalently [16] if and only if

STAB(G) = {x ∈RV
+ : x(C ) ≤ 1 for all maximal cliques C of G}.

Proposition 2.7. Stable set polytopes of perfect graphs satisfy Conjecture 2.1.

Proof. For a perfect graph G = (V ,E) on d vertices, the polytope STAB(G) is d-dimensional.

If we define C , C ′ and S ′ as in Corollary 2.6, then the number of vertices in STAB(G) is at

most |S ′|. There are at most d non-negativity constraints, and at most |C | = |C ′|−1 clique

constraints, so the number of facets in STAB(G) is at most |C ′|+d −1. Hence

f0(STAB(G)) fd−1(STAB(G)) ≤ (|C ′|+d −1)|S ′|
= |C ′||S ′|+ (d −1)|S ′|
≤ (d +1)2d + (d −1)2d = d2d+1,
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where we used Corollary 2.6 and the trivial inequality |S ′| ≤ 2d . We see that the conjectured

inequality is satisfied, and is tight only in the trivial cases d = 1 or |S ′| = 2d . In the latter case,

G has no edges and STAB(G) is affinely isomorphic to the cube. �

2.3.2 Hansen polytopes

Given a (d −1)-dimensional polytope P , the twisted prism of P is the d-dimensional polytope

defined as the convex hull of {(x,1) : x ∈ P } and {(−x,−1) : x ∈ P }. For a perfect graph G with

d −1 vertices, its Hansen polytope [54], Hans(G), is defined as the twisted prism of STAB(G).

Hansen polytopes are 2-level and centrally symmetric, see e.g. [10].

Proposition 2.8. Hansen polytopes satisfy Conjecture 2.1.

Proof. Let G = (V ,E) be a perfect graph on d −1 vertices, and let C ′ and S ′ be as in Corol-

lary 2.6. Then Hans(G) has 2|S ′| vertices (from the definition), and 2|C ′| facets (see e.g. [54]).

Using again Corollary 2.6, we get

f0(Hans(G)) fd−1(Hans(G)) = 4|S ′||C ′| ≤ 4d2d−1 = d2d+1.

The inequality is tight only if G is either a clique or an anti-clique. The Hansen polytopes of

these graphs are affinely equivalent to the cross-polytope and cube, respectively. �

2.3.3 Min up/down polytopes

Fix two integers 0 < l < d . For a 0/1 vector x ∈ {0,1}d and index 1 ≤ i ≤ d −1, we call i a switch

index of x if xi 6= xi+1. The vector x satisfies the min up/down constraint (with parameter l )

if for any two switch indices i < j of x, we have j − i ≥ l . In other words, when x is seen as a

bit-string then it consists of blocks of 0’s and 1’s each of length at least ` (except possibly for

the first and last blocks). The min up/down polytope Pd (l ) is defined as the convex hull of all

0/1 vectors in Rd satisfying the min up/down constraint with parameter l . Those polytopes

have been introduced in [72] in the context of discrete planning problems with machines

that have a physical constraint on the frequency of switches between the operating and not

operating states.1 In [72, Theorem 4], the following characterization of the facet-defining

inequalities of Pd (l ) is given.

Lemma 2.9. Let I ⊂ [d ] be an index subset with elements 1 ≤ i1 < i2 < ·· · < ik ≤ d, such that

a) k = |I | is odd and b) ik − i1 ≤ l . Then, the two inequalities 0 ≤∑k
j=1(−1) j−1xi j ≤ 1 are facet-

defining for Pd (l ). Moreover, each facet-defining inequality in Pd (l ) can be obtained in this

way.

1The more general definition given in [72] considers two parameters `1 and `2, which respectively restrict the
minimum lengths of the blocks of 0’s and 1’s in valid vertices. The resulting polytope is 2-level precisely when
`1 = `2, thus in this section we restrict our attention to this case. General (non-2-level) min up/down polytopes do
not satisfy Conjecture 2.1; see Example 2.6.3.
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It is clear from this result that Pd (l ) is a 2-level polytope. Indeed, if all vertices of a polytope

have 0/1 coordinates and all facet-defining inequalities can be written as 0 ≤ cT x ≤ 1 for

integral vectors c, then the polytope is 2-level.

Proposition 2.10. 2-level min up/down polytopes satisfy Conjecture 2.1.

Proof. Consider the 2-level min up/down polytope Pd (l ), for integers 0 < l < d . Pd (l ) is

full dimensional, hence it has dimension d . Define the graph G([d −1],E), where {i , j } ∈ E

whenever | j − i | ≤ l −1, and let C ′ and S ′ be as in Corollary 2.6. We delay for a moment the

proof of the following facts: a) f0(Pd (l )) = 2|S ′|; and b) fd−1(Pd (l )) = 2|C ′|. We obtain:

f0(Pd (l )) fd−1(Pd (l )) = 4|S ′||C ′|.

This is the same inequality that appears in the proof of Proposition 2.8, hence in a similar

fashion we conclude that the conjectured inequality is satisfied, and it is tight only if G is either

a clique or an anti-clique. These cases correspond to l = d −1 and l = 1, respectively, and it

can be checked that Pd (l ) is then affinely equivalent to the cross-polytope or the cube.

Proof of fact a). For a vector x ∈ {0,1}d , let Ix ⊆ [d −1] be its set of switch indices. Then x is

(a vertex) in Pd (l ) iff Ix is a stable set in G . Moreover, if two vertices x, y ∈ Pd (l ) have exactly

the same switch indices, then either x = y or x + y = 1 (the all-ones vector). Hence, there is a

mapping from the set of vertices of Pd (l ) to S ′, where each pre-image contains 2 elements.

This proves the claim.

Proof of fact b). Let I ⊆ 2[d ] be the collection of all index sets I ⊆ [d ] satisfying the properties

of Lemma 2.9. The lemma asserts that fd−1(Pd (l )) = 2|I |. To complete the proof, we present

a bijection from I to C ′. For I ⊂ [d ] in I , let i be the lowest index in I , let j = min{i + l ,d},

and define I ′ = I \ { j }. I ′ is a clique in G . We conclude the proof by showing that the mapping

can be inverted, hence it is bijective. Recall that G has nodes indexed from 1 to d −1. For

I ′ ∈C ′, if |I ′| is odd, let I = I ′; if I ′ =;, let I = {d}; otherwise, let i be the lowest index in I and

j = min{i + l ,d}, and define I = I ′∪ { j }. Clearly, in all cases I ∈I , and the preimages of two

even cliques or two odd cliques are distinct. Now pick an even clique I ′. If I ′ =;, then I = {d}

is not the preimage of an odd clique. If I ′ 6= ; and i + l < d , then I is not a clique of G , hence,

in particular, it cannot be an odd clique. If d ≤ i + l , then d ∈ I , and the latter never occurs for

odd cliques. �

We remark that the graph G =Gd ,l defined in the proof of Proposition 2.10 is perfect. Therefore,

in the proof we exhibit for each min up/down polytope Pd (l ) a corresponding Hansen polytope

Hans(Gd ,l ) with equal dimension, number of vertices, and number of facets as Pd (l ). It is then

natural to wonder if these two polytopes are combinatorially equivalent, or more generally,

if min up/down polytopes are just a subclass of Hansen polytopes (after all, both classes are

2-level and centrally symmetric). This turns out not to be the case.
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Proposition 2.11. The min up/down polytope with parameters d = 8 and l = 2 is not combina-

torially equivalent to any Hansen polytope.

Proof. It can be checked computationally that the min up/down polytope P8(2) is of dimen-

sion 8 and contains 68 vertices, 28 facets, and 604 edges (see Appendix A.1 for details on the

computation). The corresponding perfect graph assigned to it in the proof of Proposition 2.10

is P7, the path on 7 nodes; and it can be checked as well that its Hansen polytope, Hans(P7), is

of dimension 8 and contains 68 vertices, 28 facets, and 622 edges (see Appendix A.1). This last

number proves that the two polytopes are not combinatorially equivalent.

It remains to show that there is no other perfect graph G , for which Hans(G) is equivalent to

P8(2). Assume by contradiction that there is such a graph G , with n nodes and m edges, and

let C ′ and S ′ be as in Corollary 2.6. From the information we have on P8(2), and from the

proof of Proposition 2.8, it follows that n = 7, |C ′| = 14 and |S ′| = 34. Notice also that the

bound |C ′| ≥ m +n +1 gives m ≤ 6. Suppose first that G is connected; then the bound on m

implies that G is a tree. There is extensive bibliography on the number of stable sets on trees,

and it particular it is known [82] that |S ′| ≥ Fn+2 (where Fn is the n-th Fibonnaci number),

and that this bound is tight only in the case of a path. As this bound is tight for G , we conclude

that G = P7, a case already considered above.

Now suppose that G is not connected. Then the number |S ′| of stable sets is equal to the

product of the corresponding numbers for each connected component. As |S ′| = 34 factors

into 2 ·17, G must be composed precisely of two components: an isolated node, and a con-

nected graph G ′ with |S ′
G ′ | = 17 stable sets, n′ = 6 nodes, and m edges, with 5 ≤ m ≤ 6. Now,

G ′ cannot be a tree, as in that case G would only have |C ′| = 13 cliques. Therefore, G ′ must

be a unicyclic graph, i.e., a tree with an additional edge. There are also extensive results on

the number of stable sets on uniclyclic graphs; in particular, it is known [97, Thm. 9] that

|S ′
G ′ | ≥ Fn′+1 +Fn′−1. This leads to the inequality 17 ≥ 13+5, which is a contradiction. This

completes the proof. �

2.3.4 Polytopes coming from posets

Consider a poset P , with order relation ¹. Its associated order polytope is

O (P ) = {x ∈ [0,1]P : xi ≥ x j whenever i ¹ j }, (2.1)

and its chain polytope is

C (P ) = {x ∈RP
+ :

∑
i∈I xi ≤ 1 for each maximal chain I ⊆ P }, (2.2)

where we recall that a subset I ⊆ P is a chain if every pair of elements in it is comparable.

Similarly, I ⊆ P is an anti-chain if no pair in it is comparable, and it is a closed set if j ∈ I and

i ¹ j imply i ∈ I . There is a well-known one-to-one correspondence between the closed sets
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and the anti-chains of a poset (the bijection maps a closed set to the subset formed by its

maximal elements, which is an anti-chain). Stanley [92] gives the following characterization of

vertices of these two polytopes.

Lemma 2.12 ([92]). The vertices of O (P ) are the characteristic vectors of closed sets of P, and

the vertices of C (P ) are the characteristic vectors of the anti-chains of P. In particular, O (P ) and

C (P ) have an equal number of vertices.

From this result it is clear that the order polytope O (P ) is a 2-level polytope because it is a

sufficient condition that all vertices have 0/1 coordinates and all facet-defining inequalities

can be written as 0 ≤ cT x ≤ 1 for integral vectors c. The chain polytope C (P ) is 2-level as well,

as we now explain. Define the comparability graph of P as GP ([d ],E ), with {i , j } ∈ E whenever

i ¹ j or j ¹ i . It is then easy to see that cliques and stable sets of this graph correspond

precisely to chains and anti-chains of P , respectively. But as comparability graphs are perfect

(see e.g. [17]), it follows that C (P ) is equal to the stable set polytope of GP , and hence it is

2-level and satisfies Conjecture 2.1 by Proposition 2.7.

The order and chain polytopes of P in general do not have the same number of facets. There

is, however, a known relation between these numbers, that immediately gives us our desired

bound.

Lemma 2.13 ([55]). The number of facets of O (P ) is less than or equal to the number of facets of

C (P ).

Lemma 2.14. Order polytopes and chain polytopes satisfy Conjecture 2.1.

Proof. Given a poset P on d elements, it is easy to see that both O (P ) and C (P ) are full

dimensional, hence both have dimension d . The proof for C (P ) is already given in the lines

above. The claimed bound for O (P ) now easily follows from the bounds stated in Lemmas

2.12 and 2.13. If this bound is tight for O (P ), then it must also be tight for C (P ) = STAB(GP );

this implies by Proposition 2.7 that GP has no edges, so P is the trivial poset and O (P ) is the

cube. �

To conclude the section, we mention a class of polytopes defined from double posets, which

was studied in [14]. A double poset is a triple (P,¹+,¹−), where ¹+ and ¹− are two partial

orders on P . The double order polytope is defined as

O (P,¹+,¹−) = conv{(2O (P+)× {1})∪ (−2O (P−)× {−1})},

where P+ is the poset relative to ¹+, and similarly for P−. A double poset is said to be com-

patible if ¹+,¹− have a common linear extension (i.e. they can be extended to the same total

order). In [14] it is proved that, if (P,¹+,¹−) is compatible, then O (P,¹+,¹−) is 2-level if and

only if ¹+=¹− and that in this case the number of its facets is twice the number of chains of

(P,¹+). This leads to the following:
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Lemma 2.15. For any poset (P,¹), the double order polytope O (P,¹,¹) satisfies Conjecture 2.1.

Proof. Let |P | = d . From the definition, it is clear that O (P,¹,¹) has dimension d +1 and twice

as many vertices as O (P ). Let A,C be the sets of anti-chains and chains of P , respectively.

Using Lemma 2.12, and the result in [14], we have that O (P,¹,¹) has 2|A| vertices and 2|C |
facets. Now, we remark that Corollary 2.6 applied to the comparability graph of P implies that

|A| · |C | ≤ (d +1)2d , this being tight only if P itself is a chain or an anti-chain. The thesis follows

immediately. �

2.3.5 Stable matching polytopes

An instance of the stable matching (or stable marriage) problem, in its most classical version,

is defined by a complete bipartite graph G(M ∪W,E) with n = |M | = |W |, together with a

list (<v )v∈M∪W , where for each vertex v , <v is a strict linear order over v ’s neighbors. The

traditional context of the problem is that there is a set M of men and a set W of women,

where each individual wishes to marry a member of the opposite set, and has a list of strict

preferences (for instance, m <w m′ means that w prefers m′ over m). A stable marriage is

a perfect matching µ in G with the property that there is no un-matched pair where both

individuals prefer each other over their partners; more precisely, if µ(v) represents v ’s partner

in matching µ, then µ is stable if and only if

∀mw ∈ E \µ, either m <w µ(w) or w <m µ(m).

Let M be the set of stable matchings of this instance. The stable matching polytope S(M ) is

the convex hull of the characteristic vectors of all stable matchings in M . As every instance

has at least one stable matching [37], S(M ) is a non-empty subset of [0,1]E . Furthermore, it is

known [84] that this polytope can be represented as follows.

S(M ) =
{

x ∈RE
≥0 : x(δ(v)) ≤ 1 ∀v ∈V , xmw + ∑

m′>w m
xm′w + ∑

w ′>m w
xmw ′ ≥ 1 ∀mw ∈ E

}
.

From this description, it is evident that S(M ) is a 2-level polytope, because all vertices have

0/1 coordinates, and all inequalities are of the form α≤ cᵀx ≤α+1 for some integral vector c

and integerα.2 Our strategy is to prove that the stable matching polytope is affinely equivalent

to an order polytope, and hence satisfies Conjecture 2.1 by Proposition 2.14. To this end, we

first present some necessary notation and results.

For a pair of stable matchings µ,µ′ in M , the relation µ¹µ′ signifies that every woman is at

least as happy with µ′ than with µ, i.e., for each w ∈W , either µ(w) <w µ′(w) or µ(w) =µ′(w).

This relation makes M a distributive lattice; see [66]. We denote by µ0 and µz respectively the

2To visualize this, notice that the above-mentioned description is equivalent to S(M ) = {x ∈ RE : 0 ≤ xmw ≤
1 and 1 ≤ xmw +∑

m′>w m xm′w +∑
w ′>m w xmw ′ ≤ 2 for each mw ∈ E , and 0 ≤ x(δ(v)) ≤ 1 for each v ∈V }.
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(unique) minimum and maximum in this lattice. Further, the ordered pair (µ,µ′) of distinct

stable matchings is a covering pair if µ¹µ′ and there is no other µ′′ ∈M such that µ¹µ′′ ¹µ′.
The lattice structure of M can be represented by its Hasse diagram, which is the directed graph

H(M , A), where A is the set of all covering pairs.

The rotation generated by a covering pair (µ,µ′) ∈ A is defined as ρ = (ρ−,ρ+), where ρ− =µ\µ′

and ρ+ =µ′ \µ. We refer to sets ρ− and ρ+ respectively as the tail and the head of rotation ρ.3

LetΠ be the set of all rotations generated by covering pairs in A, and notice that more than

one covering pair may generate the same rotation inΠ. For a pair of rotations ρ,ρ′ inΠ, we

say that ρ precedes ρ′, if in any µ0 −µz path P in the Hasse diagram H , any arc generating ρ

precedes any arc generating ρ′.4 This precedence relation defines a poset structure overΠ [56].

We now enumerate some properties of the rotation posetΠ.

Lemma 2.16. LetΠ be the rotation poset associated to M .

1. [52, Thm. 2.5.4] For each µ ∈M , there is a subsetΠ(µ) ⊆Π such that, for each µ0 −µ path

P in H, the set of rotations generated by arcs in P is preciselyΠ(µ), with each rotation in

it generated exactly once.

2. [52, Thm. 2.5.7] For each µ ∈ M , Π(µ) is a closed set of the rotation poset Π, and this

mapping defines a bijection between M and the closed sets inΠ.

The following proposition was observed in [28]. We give a proof for completeness.

Proposition 2.17. The vector family
{
χρ

+ −χρ−}
ρ∈Π is linearly independent in RE .

Proof. We first prove the following claim: for an edge mw ∈ E and two rotations ρ1,ρ2 ∈Π, if

mw ∈ ρ+
1 ∩ρ−

2 , then ρ1 precedes ρ2. Notice first that ρ1 and ρ2 must be in distinct rotations,

because the head and the tail of any rotation are always disjoint. Now, consider any µ0 −µz

path P in H : we know that each of ρ1 and ρ2 is generated by an arc in P exactly once, by

Lemma 2.16 (1), and we also know that the happiness of woman w increases monotonously

along the path. If ρ2 was generated before ρ1, this would imply that w leaves partner m only

to go back to him later on, which violates monotonicity. This proves the claim.

To prove the thesis, consider the linear combination∑
ρ∈Π

λρ(χρ
+ −χρ−

) = 0, (2.3)

3This is not the standard definition of rotation found in the literature, but can be seen to be equivalent by [51,
Thm. 6]. (Our notation is also different, with the traditional notation being as follows. If ρ = (ρ−,ρ+) is generated
by (µ,µ′), then ρ is said to be exposed in µ; µ′ is said to be obtained from µ after eliminating ρ from it, and denoted
by µ/ρ; each edge in ρ− is eliminated by ρ, and each edge in ρ+ is produced by ρ.)

4Again, this is not the standard definition of the precedence relation, but can be seen to be equivalent by [52,
Thm. 3.2.1].
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for some coefficients λρ , and assume by contradiction that not all coefficients are zero. Among

all rotations ρ with λρ 6= 0, let ρ2 be a minimal one on the corresponding restriction of the

rotation poset, and let mw be an edge in ρ−
2 (such edge exists as no rotation tail can be empty).

In [52, Lemma 3.2.1] it is proved that each edge in E appears in the tail of at most one rotation

(as well as in the head of at most one rotation in Π). Hence, mw appears in no other tail,

so for equation (2.3) to hold, mw must appear in the head of a distinct rotation ρ1, with

λρ1 6= 0. By the previous claim, ρ1 precedes ρ2, which contradicts the choice of rotation ρ2.

This completes the proof. �

Theorem 2.18. Given a lattice M of stable matchings, with associated rotation poset Π, the

stable matching polytope S(M ) is affinely equivalent to the order polytope O (Π). More precisely,

if µ0 is the minimal element in M , then

S(M ) =χµ0 + A ·O (π),

where A ∈RE×Π is the matrix with columns of the form Aρ =χρ+ −χρ−
for each ρ ∈Π.

Proof. Let Q be the polytope on the right-hand side of the claimed identity. Q is clearly an

affine projection of O (Π) into RE . Further, the affine dimension of Q is equal to that of O (Π),

by Proposition 2.17. Hence, Q is affinely equivalent to O (Π).

It remains to show that S(M ) =Q, which we do by proving that the collection of vertices of

these polytopes coincide. Recall from Lemma 2.12 that the vertices of O (Π) are precisely the

characteristic vectors of the closed sets in Π, and that these closed sets are in one-to-one

correspondence to the stable matchings in M , by Lemma 2.16 (2). We thus obtain that the

vertices of Q are
{
χµ0 +∑

ρ∈Π(µ)(χ
ρ+ −χρ−

)
}
µ∈M .

Finally, we prove that χµ =χµ0 +∑
ρ∈Π(µ)(χ

ρ+ −χρ−
) for each stable matching µ. Fix µ ∈M , and

fix a µ0 −µ path P in H : this defines a chain of stable matchings µ0 ¹µ1 ¹ ·· · ¹µk =µ, and a

sequence of rotations ρ1, · · · ,ρk , so that ρi = (ρ−
i ,ρ+

i ) = (µi−1 \µi ,µi \µi−1) for each 1 ≤ i ≤ k.

Therefore, χµi =χµi−1 + (χρ
+
i −χρ−

i ), which by recursion gives us χµ =χµ0 +∑k
i=1(χρ

+
i −χρ−

i ). By

Lemma 2.16 (1), setsΠ(µ) and {ρ1, · · · ,ρk } are equal with no repeated elements. This completes

the proof. �

As remarked before, this result immediately implies our desired bound, by Proposition 2.14.

Corollary 2.19. Stable matching polytopes satisfy Conjecture 2.1.

We conclude the section with a remark on Theorem 2.18. Even though its proof is relatively

straightforward, to the best of our knowledge this explicit connection was absent in the

(extensive) literature of the problem, and it seems to simplify known results as well as shed

new light on the structure of the stable matching polytope S(M ). In particular, Eirinakis

et al. [27] have recently obtained for the first time the dimension, the number of facets,

18



2.4. 2-Level Matroid Base Polytopes

and a complete minimal linear description of S(M ). Their analysis, based on the study of

the rotation poset Π, as well as on “reduced non-removable sets of non-stable pairs", is far

from trivial. In contrast, our observation is theoretically simpler and immediately provides

those results, as the facial structure of order polytopes is very well understood, and a simple

minimal linear description of it is known; see [92]. Moreover, our result is also algorithmically

significant, as it provides, from the rotation poset Π, a non-redundant system of equations

and inequalities of S(M ); and Π can be efficiently constructed from the preference lists, in

time O(n2) [52, Lemma 3.3.2].

2.4 2-Level Matroid Base Polytopes

We start the section with basic definitions and facts about matroids that will be needed

throughout the section. For a more complete treatment of these notions we refer the reader

to [80]. We identify a matroid M by the couple (E ,B), where E = E(M) is its ground set, and

B = B(M) is its base set. Whenever it is convenient, we describe a matroid in terms of its

family I =I (M) of independent sets or its rank function rM or simply rk when there is no

ambiguity. Given M = (E ,B) and a set F ⊆ E , the restriction M |F is the matroid with ground set

F and independent sets I (M |F ) = {I ∈I (M) : I ⊆ F }; and the contraction M/F is the matroid

with ground set M \ F and rank function rM/F (A) = rM (A∪F )− rM (F ). For an element e ∈ E ,

the removal of e is M −e = M |(E −e). A set F ⊆ E is a circuit if it minimally dependent, i.e. F

is dependent but every proper subset of it is independent; and F ⊆ E is a flat if it is maximal

for its rank, i.e. r (F ) < r (F +x) for all x ∈ E \ F . An element p ∈ E is called a loop (respectively

coloop) of M if it appears in none (all) of the bases of M .

Consider matroids M1 = (E1,B1) and M2 = (E2,B2), with non-empty base sets. If E1 ∩E2 =;,

we can define the direct sum M1 ⊕M2 as the matroid with ground set E1 ∪E2 and base set

B1 ×B2. If, instead, E1 ∩E2 = {p}, where p is neither a loop nor a coloop in M1 or M2, we let

the 2-sum M1 ⊕2 M2 be the matroid with ground set E1 ∪E2 −p, and base set {B1 ∪B2 −p :

Bi ∈ Bi for i = 1,2 and p ∈ B14B2}. A matroid is connected (2-connected for some authors)

if it cannot be written as the direct sum of two matroids, each with fewer elements; and a

connected matroid M is 3-connected if it cannot be written as a 2-sum of two matroids, both

with strictly fewer elements than M .

The proofs of the following facts can be found e.g. in [80].

Proposition 2.20. Let M = M1 ⊕2 M2, with E(M1)∩E(M2) = {p}.

1. M1 ⊕2 M2 is connected if and only if so are M1 and M2.

2. B(M1 ⊕2 M2) =B(M1 −p)×B(M2/p)]B(M1/p)×B(M2 −p).

3. |B(Mi )| = |B(Mi −p)|+ |B(Mi /p)|, for i = 1,2.

4. If M2 = M ′
2 ⊕M ′′

2 , where E(M1)∩E(M ′
2) = {p} and (E(M1)∪E(M ′

2))∩E(M ′′
2 ) = ;, then

M1 ⊕2 M2 = (M1 ⊕2 M ′
2)⊕M ′′

2 .
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2.4.1 2-level matroid polytopes and Conjecture 2.1

In this section we describe those matroids whose base polytope is 2-level and we prove that

Conjecture 2.1 holds for such polytopes.

The base polytope B(M) ⊆RE of a matroid M = (E ,B) (also called matroid polytope) is given

by the convex hull of the characteristic vectors of its bases. The following is known to be a

description of B(M) (see, for instance, [89]):

B(M) = {x ∈ [0,1]E : x(F ) ≤ r (F ) for F ⊆ E ; x(E) = r (E) }. (2.4)

A matroid M(E ,B) is uniform if B = (E
k

)
, where k is the rank of M . We denote the uniform

matroid with n elements and rank k by Un,k . It is easy to check that the base polytope of a

uniform matroid is a hypersimplex, i.e. B(Un,k ) = {x ∈ Rn : 0 ≤ x ≤ 1,
∑n

1 xi = k}. Notice that,

if M1 and M2 are uniform matroids with |E(M1)∩E(M2)| = 1, then M1 ⊕2 M2 is unique up to

isomorphism, for any possible common element.

8, 9, 10
5, 6, 7,

U6,3

1, 2, 3,
4, 5

U5,2

5

Figure 2.1 – A representation of M =U5,2 ⊕2 U6,3. M has ground set {1,2,3,4,6,7,8,9,10} and
rank 4, and two of its bases are {1,2,6,7} and {1,6,7,8}. B(M) is 2-level (see Theorem 2.21).

Let M be the class of matroids whose base polytope is 2-level. M has been characterized in

[48]:

Theorem 2.21. The base polytope of a matroid M is 2-level (i.e. M ∈M ) if and only if M can

be obtained from uniform matroids through a sequence of direct sums and 2-sums.

The following lemma implies that we can, when looking at matroids in M , decouple the

operations of 2-sum and direct sum.

Lemma 2.22. Let M be a matroid obtained by applying a sequence of direct sums and 2-sums

from the matroids M1, . . . , Mk . Then M = M ′
1 ⊕M ′

2 ⊕ ...⊕M ′
t , where each of the M ′

i is obtained

by repeated 2-sums from some of the matroids M1, . . . , Mk .

Proof. Immediately from repeated applications of Proposition 2.20, part 4. �

It is immediate to see that if M = M1 ⊕ M2, then B(M) is equal to the Cartesian product

B(M1)×B(M2). This, together with Lemma 2.22, suggests that when investigating matroids in

M , the interesting case is when such matroids are connected.
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Proposition 2.23. Let M ∈M be connected and non-uniform, with M =U1 ⊕2 . . .Ut , where Ui

are uniform matroids and t > 1. Then we can assume without loss of generality that every Ui

has at least 3 elements.

Proof. No matroid in a 2-sum can have ground set of size one, since the 2-sum is defined

when the common element is not a loop or a coloop of either summand. For the same reason,

we can exclude the matroids U2,0,U2,2. The only remaining uniform matroid on two elements

is U2,1. However, it is easy to see that for any matroid M , M ⊕2 U2,1 is isomorphic to M : if the

ground set of U2,1 is {p,e}, with p being the element common to M , the 2-sum has the only

effect of replacing p by e in M . �

We now make a general observation on the structure of the base polytope of 2-sums of ma-

troids, which will be used to prove all the results in this section. This fact can be derived from

[48], Lemma 3.4, and a weaker version of it is also observed in [58], but for completeness we

give a simple proof.

Lemma 2.24. Let M1(E1,B1), M2(E2,B2) be matroids with E1∩E2 = {p} and let M = M1⊕2 M2.

Then B(M) is linearly isomorphic to B(M1)×B(M2)∩{x ∈RE1]E2 : xp1+xp2 = 1}, where E1]E2 =
E1 ∪E2 ∪ {p1, p2}−p is the disjoint union of E1 and E2, with p1 and p2 corresponding to p ∈ E1

and p ∈ E2 respectively.

Proof. Let Q = B(M1)×B(M2)∩H , where H = {x ∈ RE1]E2 : xp1 + xp2 = 1}, let E = E1 ∪E2 −p

be the ground set of M , and consider the projection ϕ :RE1]E2 →RE , i.e. such that ϕ(~1e ) =~1e

for any e ∈ E , and ϕ(~1p1 ) =ϕ(~1p2 ) =~0. We first claim that B(M) =ϕ(Q). It follows directly from

definitions of cartesian product and 2-sum that B(M) and ϕ(Q) have the same integer vertices.

To prove the claim we need to show that Q (hence ϕ(Q)) does not have any fractional vertices.

Suppose that such a vertex v exists: then v is the intersection of the hyperplane H with (the

interior of) an edge of B(M1)×B(M2). Using the properties of adjacency of the cartesian

product, we can assume without loss of generality that v =λw + (1−λ)w ′ for some 0 <λ< 1,

where w = (χB1 ,χB2 ), w ′ = (χB1 ,χB ′
2 ) are vertices of B(M1)×B(M2), with χB2 ,χB ′

2 adjacent

vertices of B(M2). In particular we have that wp1 = w ′
p1

, hence wp1 +wp2 ≥ 1, w ′
p1

+w ′
p2

≥ 1,

but this is a contradiction since w, w ′ must be on two different sides of H .

We are left to show that ϕ restricted to Q is injective to conclude that ϕ is a bijection from Q to

B(M). To see this, assume that there are x, y ∈Q such that ϕ(x) =ϕ(y), hence xe = ye for any

e ∈ E . But then since x, y satisfy the rank equality of B(M1),

xp1 = rk(M1)− ∑
e∈E1−p

xe = rk(M1)− ∑
e∈E1−p

ye = yp1 ,

and arguing similarly we get xp2 = yp2 , therefore we have x = y . �

Before we prove that Conjecture 2.1 holds for 2-level base polytopes, we need one last technical
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ingredient which is a consequence of the previous Lemma.

Proposition 2.25. Let M ∈ M be such that M = M1 ⊕2 U where U = Un,k is a 3-connected

uniform matroid with n ≥ 3. Then fd−1(B(M)) ≤ fd1−1(B(M1))+2(n −1), where d denotes the

dimension of B(M); and if n = 3 then fd−1(B(M)) ≤ fd1−1(B(M1))+2.

Proof. Using Lemma 2.24, we obtain that B(M) is linearly isomorphic to Q = B(M1)×B(U )∩
{x ∈ RE1]E2 : xp1 + xp2 = 1}, where E1,E2, p, p1, p2 are defined as before. From this it follows

that fd−1(B(M)) ≤ fd1−1(B(M1))+ fd2−1(B(U )), where d2 is the dimension of B(U ). More-

over, as already remarked B(U ) = {x ∈ Rd2 : 0 ≤ x ≤ 1,
∑

i xi = k} hence fd2−1(B(U )) ≤ 2n and

fd−1(B(M)) ≤ fd1−1(B(M1))+2n. To slightly sharpen the bound, we claim that the inequalities

0 ≤ xp2 ≤ 1 present in the description of Q are redundant, which proves the first part of the

thesis. Indeed, they are immediately implied by the inequalities 0 ≤ xp1 ≤ 1 (which must be

implied by the description of B(M1)) together with the equation xp1 +xp2 = 1.

We now consider the case n = 3. It is immediate to check that there are two cases, U =U3,1 and

U =U3,2, but for both B(U ) is isomorphic to a triangle in the plane, and hence fd2−1(B(U )) = 3,

with one inequality for each variable: for instance, a description of B(U3,1) is {x ∈ R3 : x ≥
0, x1 + x2 + x3 = 1}. Arguing as before, we obtain that in the resulting description of Q the

inequality relative to xp2 is redundant, thus getting the desired bound. �

Theorem 2.26. 2-level matroid base polytopes satisfy Conjecture 2.1.

Proof. We will use the fact that, for any n ≥ 3 and any k ∈ {0, . . . ,n},
(n

k

)≤ 3
4 2n−1. This can be

easily proved by induction. We prove the conjecture on the polytope B(M), for each matroid

M = (E ,B) ∈M , and we prove it by induction on the number of elements n = |E |. The base

cases n ≤ 3 can be easily verified.

If M is not connected, then M = M1 ⊕ M2 for two matroids M1, M2 ∈ M , each with fewer

elements than M , so by induction hypothesis the conjecture holds for them. As already

remarked, the base polytope B(M) is simply the Cartesian product B(M1)×B(M2), so by

Lemma 2.3 the conjecture also holds for B(M), and is tight only if B(M) is a cube.

Assume from now on that M is connected. In [48], it is proven that the smallest affine subspace

containing the base polytope of a connected matroid on n elements is of dimension d = n −1.

If M is uniform, M =Un,k , the number of vertices in B(M) is f0 = |B| = (n
k

) ≤ 3
4 2n−1, where

we assumed n ≥ 3. And in view of Proposition 2.23, the constraints of the form 0 ≤ x ≤ 1 are

sufficient to define B(M), hence the number of facets is fd−1 ≤ 2n. Therefore, f0 fd−1 ≤ 3
4 n2n ≤

(n −1)2n = d2d+1, where the last inequality is loose for n ≥ 5. The only examples with n ≤ 4

for which the conjecture is tight correspond to cubes, and the 3-dimensional cross-polytope

coming from U4,2.

Finally, assume that M is connected but is not uniform, so it is not 3-connected. Then

M = M1 ⊕2 M2, with matroids M1, M2 ∈M each with fewer elements than M , so by induction
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hypothesis the conjecture holds for both of them. Let E(M1)∩E(M2) = {p}. Both M1 and M2

are connected, by Proposition 2.20. We can assume without loss of generality that E(M1) =
n1 ≥ n2 = E(M2), and that M2 is uniform, M2 =Un2,k2 , with n2 ≥ 3 (by Proposition 2.23). We

consider two cases for the value of n2.

Case n2 ≥ 4: first notice that the family M is closed under removing or contracting an element.

This is because if e ∈ M ∈M , the base polytopes B(M −e) and B(M/e) are affinely isomorphic

to the faces of B(M) that intersect the hyperplanes xe = 0 and xe = 1, respectively, and by

Lemma 2.2 these faces are also 2-level. Hence, we know from Proposition 2.20 that

f0 = |B(M)| = |BM1−p | · |BUn2,k2 /p |+ |BM1/p | · |BUn2,k2−p |

=
(

n2 −1

k2 −1

)
|BM1−p |+

(
n2 −1

k2

)
|BM1/p |

≤ 3

4
2n2−2 (|BM1−p |+ |BM1/p |

)= 3

4
2d2−1|B(M1)|.

From Proposition 2.25, the number of facets in B(M) is fd−1(B(M)) ≤ fd1−1(B(M1))+2(n2−1) =
fd1−1(B(M1))+2d2. We use the induction hypothesis in M1, and the trivial bound |B(M1)| ≤ 2d1

to obtain:

f0 fd−1(B(M)) < 3

4
2d2−1|B(M1)|( fd1−1(B(M1))+2d2

)
≤ 3

4
2d2−1

(
d12d1+1 +2d1 (2d2)

)
= 3

4
(d1 +d2)2d1+d2 < (d1 +d2 −1)2d1+d2 = d2d+1.

Where in the last inequality we used the fact that n1 ≥ n2 ≥ 4, so d1 ≥ d2 ≥ 3.

Case n2 = 3: We can prove in a similar manner as before that

f0 = |B(M)| <
(

2

1

)(|B(M1 −p)|+ |B(M1/p)|)= 2|B(M1)|.

And from Proposition 2.25, fd−1(B(M)) ≤ fd1−1(B(M1))+2. Thus,

f0 fd−1(B(M)) < 2|B(M1)|( fd1−1(B(M1))+2
)≤ 2

(
d12d1+1 +2d1 ·2

)
= d2d+1.

We conclude by remarking that, since the inequalities above hold strictly, the only 2-level base

polytopes satisfying the bound of Conjecture 2.1 are cubes and cross-polytopes. �

As the forest matroid of a graph G is in M if and only if G is series-parallel [48], we deduce the

following.

Corollary 2.27. Conjecture 2.1 is true for the spanning tree polytope of series-parallel graphs.
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2.4.2 Flacets of 2-sums

We now give a general result on the facets of base polytopes whose matroid is a 2-sum. In

earlier version of this work (see [2]) this was an important step in the proof of Theorem 2.26,

which was later simplified using Lemma 2.24 (we are indebted to an anonymous referee of

[1] for suggesting this). However, this result has independent interest beyond the setting of

2-level polytopes, since it holds for all matroid base polytopes, and we report it here with a

simplified proof that uses Lemma 2.24.

For a matroid M , we recall that:

B(M) = {x ∈ [0,1]E : x(F ) ≤ r (F ) for F ⊆ E ; and x(E) = r (E) }. (2.5)

When M is connected [30], and independently [36], give the following characterization of the

facet-defining inequalities for (2.5). We report the statement as it appears in [48].

Theorem 2.28. Let M = (E ,B) be a connected matroid. For every facet F of B(M) there is a

unique F ⊆ E, F 6= ;, such that F = B(M)∩{x ∈RE : x(F ) = r (F )}. Moreover, a non-empty subset

F gives rise to a facet of B(M) if and only if one of the these two conditions holds:

1. F is a flat such that M |F , M/F are connected;

2. F = E −e for some e ∈ E such that M |F , M/F are connected.

The subsets F in 1. are called flacets, and they are in 1-to-1 correspondence with the facet-

defining inequalities in (2.5) of the form x(F ) ≤ r (F ), including xe ≤ 1 for e ∈ E . In the latter

case, i.e. when F = {e} for some e, the condition on M |e is automatically satisfied, hence F is a

flacet if and only if M/e is connected. For F = E −e satisfying the conditions in 2., we refer to

element e as defining a non-negativity facet. Indeed it can be easily seen that it defines the

same facet as xe ≥ 0.

Hence B(M) has the following non-redundant description:

B(M) = {x ∈RE : x(F ) ≤ r (F ) for F ⊆ E flacet of M , |F | ≥ 2;

xe ≤ 1 for e ∈ E : M/e is connected;

xe ≥ 0 for e ∈ E : M −e is connected;

x(E) = r (E) }.

(2.6)

The latter results characterize facets of B(M) using the combinatorial structure of M . However,

as it is not known how to efficiently enumerate the flacets of a matroid (say, in polynomial

time in the size of the output) this might not be helpful to actually write down a compact

description of B(M), even if one exists. The main result of this section, Theorem 2.30, makes a

step in this direction by giving an explicit non-redundant description of B(M), given a 2-sum

decomposition M = M1 ⊕2 M2 and a description of B(M1),B(M2) of the type of (2.6).
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Throughout the rest of the section, we assume that M1(E1,B1), M2(E2,B2) are connected

matroids, with, E1 ∩E2 = {p}, and we define M = M1 ⊕2 M2. Thanks to Proposition 2.20,

under these assumptions M is also connected. By the arguments above, characterizing B(M)

essentially boils down to characterizing flacets of M1 ⊕2 M2.

To prove Theorem 2.30 we first need the following technical observation.

Observation 2.29. Let M1(E1,B1), M2(E2,B2), M(E ,B) = M1 ⊕2 M2 be as above. Let ; 6= F ⊆
Ei −p for some i ∈ {1,2}, and assume that p is not a loop or a coloop of Mi |(F +p). Then, for

j ∈ {1,2}, i 6= j , one has

M |(E j ∪F −p) = Mi |(F +p)⊕2 M j ,

hence rk(E j ∪F −p) = rk(E j −p)+ rk(F )−1.

Proof. The two matroids clearly have the same ground set. We will show that they also have

the same independent sets. For simplicity fix i = 1, j = 2, and let I ⊆ E2 ∪F −p. Then, as M

is a 2-sum, I is an independent set of M |(E2 ∪F −p) if and only if I = I1 ∪ I2 −p, for some

I1, I2 independent sets of M1, M2 respectively with p ∈ I14I2, where in particular I1 can be

chosen to be a subset of F +p. Hence the latter is equivalent to I being an independent set of

M1|(F +p)⊕2 M2. �

Theorem 2.30. Let M1(E1,B1), M2(E2,B2), M(E ,B) = M1 ⊕2 M2 be as above. Let F ( E. Then

F is a flacet of M if and only if one of the following holds:

1. F = Ei ∪F ′−p, where F ′ is a flacet of M j containing p, and i 6= j ∈ {1,2}.

2. F is a flacet of Mi not containing p for some i ∈ {1,2}.

3. F = Ei −p, and Mi −p, M j /p are connected, for some i , j ∈ {1,2} with i 6= j .

Proof. From Lemma 2.24, using the same notation, we have that B(M) = Π(Q), where Q =
B(M1)×B(M2)∩ {y ∈ RE1]E2 : yp1 + yp2 = 1} and Π : RE1]E2 → RE is the function that projects

out the components corresponding to p1, p2, and it is a bijection from Q to B(M). Let rki

denote the rank function of Mi , for i = 1,2. Let us consider the following description of Q,

obtained by adding together a non-redundant description of B(M1) and B(M2):

Q = {y ∈RE1]E2 : ye ≥ 0 for e ∈ Ei : Mi −e is connected , i = 1,2

y(F ) ≤ rki (F ) for F flacet of Mi , i = 1,2

y(Ei ) = rki (Ei ) for i = 1,2

yp1 + yp2 = 1}.

We argue that this is a non-redundant description of Q, possibly apart from the inequalities

ypi ≤ 1. First, notice that the description without the equation yp1 +yp2 = 1 is a non-redundant
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description of B(M1)×B(M2). By adding such equation, the inequalities ypi ≤ 1 and yp j ≥
0 become equivalent for i 6= j , hence, in case both of them were present, one becomes

redundant; however it is easy to see no other inequality can become redundant this way.

Now, fix ; 6= F ( E and let F = {x ∈ B(M) : x(F ) = rk(F )} be a face of B(M). We have that F is

a facet of B(M) if and only if F ′ =Π−1(F ) is a facet of Q. It is immediate to see that the non-

negativity facets {x ∈ B(M) : xe = 0} are in one to one correspondence with the facets {y ∈Q :

ye = 0} for e ∈ E = E1 ]E2 − {p1, p2}. This implies that flacets of M must be in correspondence

with the flacets of M1, M2, and possibly the inequalities yp1 ≥ 0, yp2 ≥ 0 (or equivalently yp1 ≤
1, yp2 ≤ 1). Hence, we can characterize F by investigating the inequality corresponding to

F ′, using the fact that each facet of a base polytope has a unique representation in term of

non-negativity or flacet inequality. We have that F is a flacet if and only if one of the following

holds:

1. F ′ = {y ∈Q : y(F ′) = rki (F ′)} for some F ′ flacet of Mi , i ∈ {1,2}, with p 6∈ F ′. Then clearly

F =Π(F ′) = {x ∈ B(M) : x(F ′) = rk(F ′)}, equivalently F = F ′.

2. F ′ = {y ∈Q : y(F ′) = rki (F ′)} for some F ′ flacet of Mi , i ∈ {1,2}, with p ∈ F ′. Fix i = 1 for

simplicity. We now argue that, for any basis of M B = B1∪B2−p, we have that |B1∩F ′| =
rk1(F ′) if and only if |B ∩ (E2 ∪F ′−p)| = rk(E2 ∪F ′−p). Indeed, using Observation 2.29,

we have

|B ∩ (E2 ∪F ′−p)| = |B1 ∩F ′|+ rk2(E2)−1 = rk(E2 ∪F ′−p) ⇐⇒ |B1 ∩F ′| = rk1(F ′).

Hence, this case is equivalent to F = E2 ∪F ′−p.

3. F ′ = {y ∈ Q : ypi = 0} for some i ∈ {1,2}. Fix i = 1. Notice that for any basis of M

B = B1 ∪B2 − p, we have |B ∩ (E1 − p)| = rk(E1 − p) if and only if p 6∈ B1, hence F =
Π(F ′) = {x ∈ B(M) : x(E1 − p) = rk(E1 − p)}, equivalently F = E1 − p. We still need to

argue that this case happens if and only if M1 − p and M2/p are connected. The ‘if’

direction is clear. For the other direction, if F ′ is a facet of Q, then one of yp1 ≥ 0, yp2 ≤ 1

is included in the non-redundant description of Q given above. Assume it is yp1 ≥ 0,

which implies that M1 −p is connected. If M2/p was not connected, yp2 ≤ 1 would be

a redundant inequality in the description of B(M2) and it would be implied by some

of the others. But then yp1 ≥ 0 would be implied as well by the same inequalities plus

yp1 + yp2 = 1, a contradiction. One can argue similarly in the case yp2 ≤ 1 was included

in the description of Q.

�
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Corollary 2.31. The following is a non-redundant description of B(M):

B(M) = {x ∈RE :

xe ≥ 0 e ∈ Ei −p : Mi −e connected, i = 1,2

x(Ei ∪F −p) ≤ r (Ei ∪F −p) F flacet of M j : {p}( F, i 6= j ∈ {1,2}

x(F ) ≤ r (F ) F flacet of Mi : p 6∈ F, i ∈ {1,2}

x(Ei −p) ≤ r (Ei −p) if Mi −p, M j /p connected, i 6= j ∈ {1,2}

x(E) = r (E)}.

(2.7)

2.4.3 Linear Description of 2-Level Matroid Base Polytopes

Using Proposition 2.25, one can easily prove by induction that for any M ∈ M the number

of facets of B(M) is linear in the size of the ground set. However, the description of B(M)

given in (2.5) has exponentially many inequalities. Finding compact description for the

base and the independent set polytopes of matroids has been the object of many studies,

especially in terms of extended formulations: see [85] for a negative result, and [19], [57] for

formulations for special classes of matroids. These results can be seen as generalizations

of the formulations given for the spanning tree polytope by Martin [78]. In this section we

give an explicit description of 2-level base matroids with linearly many inequalities. The

rank inequalities needed in our description have a natural interpretations in terms of the

combinatorial structure of the matroid, and our description can be obtained in polynomial

time in the size of the ground set of the matroid (given an independence oracle for it).

In light of Theorem 2.21, to obtain a linear description of B(M) for M ∈ M one needs to

investigate the base polytope of uniform matroids, and how the description of base polytopes

behaves with respect to the operations of 1-sum and 2-sum of matroids. For the former, one

can make the following easy observation, which has already been stated in equivalent form in

Section 2.4.1:

Observation 2.32. Let Un,k be a uniform matroid. Then Un,k has no flacet beside its singletons.

In particular, B(Un,k ) = {x ∈Rn : 0 ≤ x ≤ 1,
∑

i xi = k}.

Since the base polytope of the 1-sum of matroids is the Cartesian product of the base polytopes,

to obtain a linear description of B(M) for M ∈M , we can focus on base polytopes of connected

matroids. We will use Theorem 2.30 to deal with the base polytope of 2-sums of matroids. Any

connected matroid can be seen as a sequence of 2-sums, which can be represented via a tree

(see Figure 2.2): the following is a version of [80, Proposition 8.3.5] tailored to our needs. For

completeness, we include a proof.

Theorem 2.33. Let M be a connected matroid. Then there are 3-connected matroids M1, . . . Mt ,

and a t-vertex tree T = T (M) with edges labeled e1, . . . ,et−1 and vertices labeled M1, . . . , Mt ,

such that

1. E(M)∩ {e1, . . . ,et−1} =;, and E(M1)∪E(M2)∪·· ·∪E(Mt ) = E(M)∪ {e1, . . . ,et−1};
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2. if the edge ei joins the vertices M j1 and M j2 , then E(M j1 )∩E(M j2 ) = {ei };

3. if no edge joins the vertices M j1 and M j2 , then E(M j1 )∩E(M j2 ) =;.

Moreover, M is the matroid that labels the single vertex of the tree T /e1, . . . ,et−1 at the conclusion

of the following process: contract the edges e1, . . . ,et−1 of T one by one in order; when ei is

contracted, its ends are identified and the vertex formed by this identification is labeled by the

2-sum of the matroids that previously labeled the ends of ei .

Proof. We proceed by induction on n = |E(M)|. For n = 1, M is 3-connected, T consists of

only one vertex and there is nothing to show. For n > 1: if M is 3-connected, again there is

nothing to show. Otherwise, M = M ′⊕2 M ′′ for some matroids M ′, M ′′, that are connected

(due to Proposition 2.20) and that satisfy |E (M ′)|, |E (M ′′)| < n. Hence by induction hypothesis

the thesis holds for M ′, M ′′. Let T ′,T ′′ be their corresponding trees, with vertices labeled by

the 3-connected matroids M ′
1, . . . , M ′

t1
, and M ′′

1 , . . . , M ′′
t2

respectively, edges labeled e ′1, . . . ,e ′t1−1

and e ′′1 , . . . ,e ′′t2−1 respectively, and let t = t1 + t2. By definition of 2-sum there is exactly one

element, which we denote by et−1, in E(M ′)∩E(M ′′). By induction we have:

E(M) = E(M ′)∪E(M ′′) \ {et−1}

=(
E(M ′

1)∪·· ·∪E(M ′
t1

) \ {e ′1, . . . ,e ′t1−1}
)∪ (

E(M ′′
1 )∪·· ·∪E(M ′′

t2
) \ {e ′′1 , . . . ,e ′′t2−1}

)
\ {et−1}.

We can assume without loss of generality that {e ′1, . . . ,e ′t1−1}∩E(M ′′) = ; by renaming the

elements of E(M ′′), and similarly we can assume {e ′′1 , . . . ,e ′′t2−1}∩E(M ′) =;. Since M ′ satisfies

properties 1-3, there is exactly one matroid M ′
i such that et−1 ∈ E(M ′

i ), and similarly there is

exactly one matroid M ′′
j such that et−1 ∈ E(M ′′

j ). Let T be the tree obtained by joining T ′,T ′′

through the edge (M ′
i , M ′′

j ). Now, it is easy to check that the matroids labeling the vertices

of T will satisfy properties 1-3 after an appropriate renaming of the matroids and relabeling

of the edges (M ′
i will be renamed Mi , M ′′

j M j+t1 , and similarly for the elements e ′i ,e ′′j ). The

statement about the contraction T /e1, . . . ,et−1 follows by induction: one first contracts the

edges in T ′ (e1, . . . ,et1−1), then the edges in T ′′ (et1 , . . . ,et−2), obtaining vertices labeled by M ′

and M ′′. Then, contracting the edge et−1 joining M ′, M ′′ one gets M ′⊕2 M ′′ = M . �

Example 2.34. Consider the matroid M whose associated tree structure is given in Figure 2.2.

The ground set of M is {1,2,3,4,8,9,10,11,12,13,14,15} and its rank, which can be computed

as the sum of the ranks of the nodes minus the number of edges, is 4. {1,2,11,13} is a basis.

For a connected matroid M(E ,B) ∈ M , Theorem 2.33 reveals a tree structure T (M), where

every node represents a 3-connected uniform matroid, and every edge represents a 2-sum

operation. We now give a simple description of the associated base polytope. Let a be an

edge of T (M). The removal of a breaks T into two connected components C 1
a and C 2

a . Let E 1
a
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1, 2, 3,
4, 5

8, 9, 10
5, 6, 7,

6, 11, 12

7, 13,

14, 15

5

6

7

U3,1

U5,2

U6,3 U4,1

Figure 2.2 – The matroid from Example 2.34.

(resp. E 2
a) be the set of elements from E that belong to uniform matroids from C 1

a (resp. C 2
a).

The following theorem shows that the inequalities needed to describe B(M) are the “trivial"

inequalities 0 ≤ x ≤ 1, plus x(F ) ≤ r (F ), where F = E 1
a or E 2

a for some edge a of T (M). If M is

2-sum of uniform matroids U1, . . . ,Ut , then clearly T will have t −1 edges. From Proposition

2.23, we know that E(Ui ) ≥ 3 for any i . Hence, if |E | = n, we have

n =
t∑

i=1
|E(Ui )|−2(t −1) ≥ 3t −2(t −1) = t +2,

hence t ≤ n −2. Thus, the total number of inequalities needed is linear in the number of

elements.

Theorem 2.35. Let M = (E ,B) ∈M be a connected matroid obtained as 2-sum of uniform ma-

troids U1 =Un1,k1 , . . . ,Ut =Unt ,kt . Let T (N , A) be the tree structure of M according to Theorem

2.33. For each a ∈ A, let C 1
a , C 2

a , E 1
a ,E 2

a be defined as above. Then

B(M) = {x ∈RE : x ≥ 0

x ≤ 1

x(F ) ≤ rk(F ) for F = E i
a for some i ∈ {1,2} and a ∈ A,

x(E) = rk(E)}.

Moreover, if F = E i
a for some i ∈ {1,2} and a ∈ A, then r (F ) = 1−|C i

a |+
∑

j :U j∈C i
a

k j .

Proof. Let us call a subset C ⊆ N a valid component for T if C =C i
a for some i ∈ {1,2} and a ∈ A,

and denote the set of all valid components of T by F . Each connected subtree of T (N , A)

represents a connected matroid obtained as 2-sums of uniform matroids. Thus, we can prove

the theorem by induction on t . The statement on the rank is immediate. For t = 1, F is

empty and, thanks to Observation 2.32, the remaining inequalities are enough to describe

B(M). Now let t > 1. Thanks to Theorem 2.30, to prove the thesis it is enough to show that,

if F is a flacet of M with |F | ≥ 2, then F ∈ F . First notice that we can write, without loss of
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generality, M = M ′⊕2 Ut , where Ut corresponds to a leaf vt of T and M ′ is obtained as 2-sums

of U1, . . . ,Ut−1, hence it satisfies the inductive hypothesis. Note that the tree corresponding to

M ′ is then T − vt . Let us denote by vl the only neighbor of vt in T . Let E ′+p, E(Ut ) = Et +p

be the ground sets of M ′, Ut respectively, where E ′ =⋃t−1
i=1 Ei , and Ei = E ∩E (Ui ) for i = 1, . . . , t .

Clearly p ∈ E(Ul ). Now, since F is a flacet of M , we can apply Theorem 2.30 to get three

possible cases. If F has non-empty intersection with both E (M ′) and Et , then we are in case 1

and either F = E(Ut )∪F ′−p or F = E ′∪Ft −p, where F ′,Ft are flacets of M ′, Ut respectively,

containing p. However, the latter case is not possible because of Observation 2.32, so the

only possibility is that F = Et ∪F ′. By induction, F ′ belongs to F ′ defined for M ′ as in the

statement of the theorem. Moreover, since F ′ contains p, its corresponding component C

in T − vt contains vl and then C + vt is a valid component for T . Moreover |F ′∩Ei | ∈ {0, |Ei |}
for any i = 1, . . . , t −1, which implies F ∈ F . Suppose now we are in case 2, i.e., F is strictly

contained in one of E ′,Et . Then F is a flacet of one of M ′, Ut , the latter not being possible

again due to Observation 2.32. So F is a flacet of M ′ and it does not contain p, hence by

induction hypothesis its corresponding component C does not contain vl . But then C is a

valid component of T and again F ∈F . Finally, if we are in case 3 then F = Et or F = E , and in

both cases F ∈F . �

We conclude by remarking that, for any matroid M , the corresponding tree structure given in

Theorem 2.33 can be obtained in polynomial time, given an independence oracle for M , for

instance using the shifting algorithm given in [9]. This means that, given an independence

oracle for M ∈M , one can efficiently write down the description of B(M) given by Theorem

2.35: first, one obtains the tree structure and the corresponding uniform matroids, and then

the rank inequalities corresponding to the edges of the tree. The latter part just takes linear

time in the number of elements of M .

2.5 Cut Polytope and Matroid Cycle Polytope

Given a graph G with edge set E , its cut polytope CU T (G) ⊆ RE is the convex hull of the

characteristic vectors of the cuts of G . For general graphs, a linear description of CU T (G) is

not known. However, for graphs without K5 as a minor, CU T (G) has been described by [6] as

follows:

CU T (G) = {x ∈ [0,1]E : x(F )−x(C \ F ) ≤ |F |−1 ∀F ∈F }, (2.8)

where F = {F ⊂V (G) : F ⊂C , C induced cycle of G , |F | odd}.

For a matroid M = (E ,B), a set C ⊆ E is a cycle if C =; or C is a disjoint union of circuits. The

cycle polytope C (M) of M is the convex hull of the characteristic vectors of its cycles [5]. Cycle

polytopes can be seen as a generalization of cut polytopes. Indeed, it can be shown that if

M is cographic, i.e. it is the dual of the forest matroid of some graph G , then the cycles of M

correspond to the cuts of G , hence C (M) =CU T (G).
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2.5. Cut Polytope and Matroid Cycle Polytope

A matroid is called binary if it can be represented over the finite field GF2. Given a matroid

M , we denote by M∗ its dual matroid. M is binary if and only if M∗ is binary. An element e

of a matroid is a chord of a circuit C if C is the symmetric difference of two circuits whose

intersection is e. A chordless circuit is a circuit with no chords and the same definition can be

applied to cocircuits, that are circuits in the dual matroid. F∗
7 denotes the dual of the Fano

matroid; R10 is a binary matroid associated with the 5×10 matrix whose columns are the 10

0/1 vectors with 3 ones and 2 zeros; M∗
K5

is the dual of the forest matroid of K5.

In this section we prove Conjecture 2.1 for the cycle polytope C (M) of the binary matroids

M that have no minor isomorphic to F∗
7 , R10, M∗

K5
and are 2-level. When those minors are

forbidden, a complete linear description of the associated polytope is known (see [5]). This

class includes all cut polytopes that are 2-level, and has been characterized in [45]:

Theorem 2.36. Let M be a binary matroid with no minor isomorphic to F∗
7 , R10, M∗

K5
. Then

C (M) is 2-level if and only if M has no chordless cocircuit of length at least 5.

Corollary 2.37. The polytope CU T (G) is 2-level if and only if G has no minor isomorphic to K5

and no induced cycle of length at least 5.

Recall that the cycle space of graph G is the set of its Eulerian subgraphs (subgraphs where

all vertices have even degree), and it is known (see for instance [49]) to have a vector space

structure over the field Z2. This statement and one of its proofs easily generalizes to the cycle

space (the set of all cycles) of binary matroids. We report the proof for completeness.

Lemma 2.38. Let M be a binary matroid with d elements and rank r . Then the cycles of M

form a vector space C over Z2 with the operation of symmetric difference as sum. Moreover, C

has dimension d − r .

Proof. That C is a vector space can be easily verified using the fact that C is closed under

taking symmetric difference. This immediately derives from a characterization of binary

matroids that can be found in [80], Theorem 9.1.2: M is binary if and only if the symmetric

difference of any set of circuits is a disjoint union of circuits. We will now give a basis for C of

size d − r . The construction is analogous to the construction of a fundamental cycle basis in

the cycle space of a graph. Consider a basis B of M . For any e ∈ E \ B , let Ce denote the unique

circuit contained in B +e (note that e ∈Ce ). Since |B | = r , we have a family BC = {Ce1 , . . . ,Ced−r }

of the desired size. Note that the Cei ’s are all linearly independent: indeed, Ce cannot be

expressed as symmetric difference of other members of BC since it is the only one containing e.

We are left to show that BC generates C . Let C ∈C , C 6= ;, and let {e1, . . . ,ed−r }∩C = ei1 , . . . ,eik

for some k ≥ 1 (indeed, C 6⊆ B). Consider now D =C4Cei1
4 . . .4Ceik

. D is a cycle, however

one can see that it is contained in B : for each e ∈ E \ B , if e ∈C then e appears exactly twice

in the expression of D, hence e 6∈ D; if e 6∈C , e does not appear in the expression at all. This

implies that D =;, which is equivalent to C =Cei1
4 . . .4Ceik

. �
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Corollary 2.39. Let M be a binary matroid with d elements and rank r . Then M has exactly

2d−r cycles.

The only missing ingredient is a description of the facets of the cycle polytope for the class of

our interest, which extends the description of the cut polytope given in (2.8).

Theorem 2.40. [5] Let M be a binary matroid, and let C be its family of chordless cocircuits.

Then M has no minor isomorphic to F∗
7 , R10, M∗

K5
if and only if

C (M) = {x ∈ [0,1]E : x(F )−x(C \ F ) ≤ |F |−1 for C ∈C ,F ⊆C , |F | odd}.

Theorem 2.41. Let M be a binary matroid with no minor isomorphic to F∗
7 , R10, M∗

K5
and such

that C (M) is 2-level. Then C (M) satisfies Conjecture 2.1.

Proof. As remarked in [5] and [45], the following equations are valid for C (M): a) xe = 0, for e

coloop of M ; and b) xe −x f = 0, for {e, f } cocircuit of M .

The first equation is due to the fact that a coloop cannot be contained in a cycle, and the

second to the fact that circuits and cocircuits have even intersection in binary matroids. A

consequence of this is that we can delete all coloops and contract e for any cocircuit {e, f }

without changing the cycle polytope: for simplicity we will just assume that M has no coloops

and no cocircuit of length 2. In this case C (M) has full dimension d = |E |. Let r be the rank of

M . Corollary 2.39 implies that C (M) has 2d−r vertices. Let now T be the number of cotriangles

(i.e., cocircuits of length 3) in M , and S the number of cocircuits of length 4 in M . Thanks to

Theorem 2.40 and to the fact that M has no chordless cocircuit of length at least 5, we have

that C (M) has at most 2d +4T +8S facets. Hence the bound we need to show is:

2d−r (2d +4T +8S) ≤ d2d+1 ⇐⇒ 2T +4S ≤ d(2r −1).

Since the cocircuits of M are circuits in the binary matroid M∗, whose rank is d − r , we can

apply Corollary 2.39 to get T +S ≤ 2r −1, where the −1 comes from the fact that we do not

count the empty set. Hence, if d ≥ 4,

2T +4S ≤ 4(T +S) ≤ d(2r −1).

The bound is loose for d ≥ 5. The cases with d ≤ 4 can be easily verified, the only tight examples

being affinely isomorphic to cubes and cross-polytopes. �

Corollary 2.42. 2-level cut polytopes satisfy Conjecture 2.1.
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2.6 On possible generalizations of the conjecture

So far, we provided a thorough analysis of 2-level polytopes coming from combinatorial

settings. We hope that the reader shares with us the opinion that those polytope are relevant

for the mathematical community, and the 2-levelness property seem to be strong enough

to leave hope for deep theorems on their structure. While we proved Conjecture 2.1 for all

2-level polytopes we could characterize, it remains open for the general case. Whether some

techniques and ideas introduced in this paper can be extended to attack it also remains open.

Here, we would like to discuss a different issue stemming from Conjecture 2.1: is 2-levelness

the “right" assumption for proving fd−1(P ) f0(P ) ≤ d2d+1, or is this bound valid for a much

more general class of 0/1 polytopes – or, more generally, of mathematical objects? We start the

investigation of this question by providing some examples of “well-behaved" 0/1 polytopes

that do not verify Conjecture 2.1. They can be seen as immediate generalizations of polytopes

for which Conjecture 2.1 holds, see Corollary 2.27 and Proposition 2.10.

2.6.1 Forest polytope of K2,n

Let P be the forest polytope of K2,n . Note that P has dimension d = 2n. Conjecture 2.1 implies

an upper bound of n22(n+1) =O(4+ε)n for f0(P ) fd−1(P ), for any ε> 0. Each subgraph of K2,n

that takes, for each node v of degree 2, at most one edge incident to v , is a forest. Those graphs

are 3n . Moreover, each induced subgraph of K2,n that takes the nodes of degree n plus at least

2 other nodes is 2-connected, hence it induces a (distinct) facet of P . Those are 2n − (n +1). In

total f0(P ) fd−1(P ) =Ω(6n).

2.6.2 Spanning tree polytope of the skeleton of the 4-dimensional cube

Let G be the skeleton of the 4-dimensional cube, and P the associated spanning tree polytope.

Through extensive computation5, we verified that f0(P ) fd−1(P ) ≥ 1.603 ·1011, while the upper

bound from Conjecture 2.1 is ≈ 1.331 ·1011.

2.6.3 3-level min up/down polytopes

Fix d ≥ 3. A 0/1 vector x ∈ {0,1}d is “bad" if there are indices 0 < i < j < d such that xi = x j+1 = 1

and xi+1 = x j = 0. In other words, when seen as a bit-string, x is bad if it contains two or more

separate blocks of 1’s. Let P ⊂Rd be the convex hull of all 0/1 vectors that are not bad: this is a

min up/down polytope, as defined in [72], with parameters `1 = 1 and `2 = d −16.

5We computed the number of spanning trees of G using the well known Kirchhoff’s matrix tree theorem [13].
The facets of the spanning tree polytope of a 2-connected graph G are roughly as many as the 2-connected, induced
subgraphs of G whose contraction is 2-connected, and we compute them by exhaustive search. The Matlab code
can be found at: http://disopt.epfl.ch/files/content/sites/disopt/files/users/249959/flacets.zip

6Recall that the min up/down polytope is 2-level precisely when its parameters `1 and `2 are equal, and in that
case the polytope satisfies Conjecture 2.1, see Proposition 2.10.
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Each non-zero vertex x in P contains exactly one block of 1’s, thus it is uniquely described

by two indices 0 ≤ i < j ≤ d , such that xk = 1 if i < k ≤ j , and xk = 0 otherwise. Therefore

(counting also the zero vector), P contains
(d+1

2

)+1 vertices. On the other hand, from the facet

characterization presented in [72] we know that

P =
{

x ∈Rd
+ :

k∑
j=1

(−1) j−1xi j ≤ 1, for 1 ≤ i1 < ·· · < ik ≤ d s.t. k is odd
}

,

where all inequalities above are facet-defining. Moreover, since the polytope is full-dimensional

(it contains the d-dimensional standard simplex) and no inequality is a multiple of another,

they all define distinct facets. This means that there are d facets coming from non-negativity

constraints, and 2d−1 facets that are in one-to-one correspondence with odd subsets of the

index set [d ]. Hence, the total number of facets is 2d−1 +d . It is easy to check that for d ≥ 3 we

have

f0(P ) fd−1(P ) =
[(

d +1

2

)
+1

]
· [2d−1 +d ] > d2d+1,

thus the polytope does not satisfy Conjecture 2.1. Note that P is a 3-level polytope: for each

facet F of P , there exist two translates of the affine hull of F such that all the vertices of P lie

either in F or in one of those two translates.

In the remaining sections, we move to extensions of Conjecture 2.1 to other settings. In some

of those cases we could prove that the conjecture does not hold. Others are interesting open

questions.

2.6.4 Polytopes of minimum PSD rank

2-level polytopes are an example of polytopes with minimum PSD rank, i.e. such that they

admit a semidefinite extension of size 1+dim(P ), see [44]. A necessary and sufficient condition

characterizing those polytopes is given in [44], where the full list of combinatorial classes

of polytopes with minimum PSD rank in dimension 2 and 3 is also given. All those are

combinatorially equivalent to some 2-level polytope of the same dimension, with the exception

of the bypiramid over a triangle, which clearly verifies Conjecture 2.1. In [46], the full list of

combinatorial classes of polytopes with minimum PSD rank in dimension 4 is given. By

going through the list of their f -vectors in [46, Table 1], one easily checks that they also verify

Conjecture 2.1. We are not aware of studies on higher-dimensional polytopes with minimum

PSD rank. We remark that in [48] it is proved that matroid base polytopes have minimum

PSD rank if and only if they are 2-level, hence Theorem 2.26 trivially implies that all matroid

polytopes with minimum PSD rank satisfy the bound of Conjecture 2.1.
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2.6.5 Polytopes with structured linear relaxations

We now consider another possible generalization of the conjecture, based on the H −embedding

of 2-level polytopes as defined in [10]. It is shown in [10] that the family of 2-level polytopes of

dimension d is affinely equivalent to the family of integral polytopes of the form

P = {x ∈Rd : 0 ≤ x(I ) ≤ 1 for all I ⊆I } (2.9)

for some I ⊆ 2[d ]. Hence, Conjecture 2.1 holds for 2-level polytopes if and only if it holds for

integral polytopes of the form (2.9). First, notice that the bound of the conjecture does not

hold for general (i.e. not integral) polytopes of the form (2.9), as for instance fractional stable

set polytopes are of such form. In particular, consider the fractional stable set polytope of the

complete graph on d vertices, P = {x ∈Rd : x ≥ 0, xi +x j ≤ 1 ∀ i 6= j , i , j ∈ [d ]}. Clearly P can be

written in form (2.9), and has d +(d
2

)
facets. It is not hard to see (we refer to [90, Chapter 64] for

further details) that P has d +1 integral vertices, and exponentially many fractional vertices

obtained by setting at least three coordinates to 1/2 and the others to 0, hence f0(P ) = 2d − (d
2

)
,

and we have f0(P ) fd−1(P ) =
[

d + (d
2

)][
2d − (d

2

)]> d2d+1 for d ≥ 5.

Another natural question is whether the bound of Conjecture 2.1 holds for integral polytopes

that admit a linear relaxation of the kind (2.9). More formally, let PI be the integer hull

of a polytope P . Is it true that, for all P of the form (2.9), one has f0(PI ) fd−1(PI ) ≤ d2d+1?

Note that this seems to be too general to be true, since such P include, for instance, all

stable set polytopes. However, given the difficulty of building explicit polytopes with many

facets (see [68] for some constructions and a discussion), finding a counter-example is non-

trivial. Through extensive computation with polymake, we found a 12-dimensional polytope

P that violates the conjecture. Indeed, for d = 12 the bound of the conjecture is 98304, while

f0(PI ) fd−1(PI ) = 535392. We give an explicit description of the polytope in the appendix.

2.6.6 0/1 matrices generalizing slack matrices of 2-level polytopes

As mentioned in Section 2.1, Conjecture 2.1 can be rephrased as an upper bound on the

number of entries of the smallest slack matrices of 2-level polytopes. It is then a natural

question whether one can extend the conjecture on classes of matrices strictly containing

those matrices.

Let M ∈ {0,1}m×n be a matrix without any repeated row or column. Using the characterization

given in [47], we have that M is the slack matrix of a 2-level d-polytope P with d ≥ 2 if and only

if:

(i) r k(M) = d +1;

(ii) The vector with all components equal to 1 belongs to the space generated by the rows of

M ;
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(iii) The cone generated by the rows of M coincide with the intersection of the space gener-

ated by the rows of M with the nonnegative orthant.

Moreover, if M is a minimal slack matrix for P , then (iv) rows of M have incomparable supports

and (v) columns of M have incomparable supports. We want to understand what happens to

Conjecture 2.1 when one of those properties is relaxed.

Relaxing (i) does not make sense, since it leads to slack matrices of 2-level polytopes of any

dimension, which clearly violate the conjecture. Now suppose we relax (iv). Let A be the slack

matrix of the d-dimensional cube, and A′ obtained from A by adding a row of 1s. A′ verifies

properties (i)-(ii)-(iii)-(v), since it is obtained from A by adding a row that is already in the

conic hull of rows of A. On the other hand, since the cube verifies Conjecture (2.1) at equality,

A′ does not verify the conjecture. Similarly, if we relax (v) instead of (iv), add a column of

1 to A as to obtain A′′. Note that this new column is also in the conic hull of the columns

of A, since AT is the slack matrix of the d-dimensional cross-polytope. Hence A′′ verifies

properties (i)-(ii)-(iii)-(iv) but not Conjecture 2.1. Finding counterexamples to the conjecture

when property (ii) or (iii) are relaxed seems to be harder, hence an interesting open question.

Note that, when (ii) is relaxed, A is the slack matrix of a polyhedral cone, see again [47].

We now investigate what happens if we relax the conditions above even further, and only

impose that the rank of M ∈ {0,1}m×n is d , and that M does not have any repeated row or

column. From the discussion above, we know that M does not verify Conjecture 2.1, but

which bound can one give on m ·n? A standard argument implies that the maximum number

of distinct rows (resp. columns) is 2d , hence m ·n ≤ 4d . Indeed, consider c1, . . . ,cd linearly

independent columns of M . Any other column is a linear combinations of the ci ’s. But then, if

two rows coincide on c1, . . . ,cd , then they are equal, a contradiction. Hence all the rows must

be distinct on c1, . . . ,cd , but then, being M 0/1, there can be at most 2d rows.

We now show that the bound m ·n ≤ 4d is not tight. We first show the following:

Claim 2.43. Let M be a 0/1 matrix of rank d , containing the identity matrix Id as submatrix,

and with no repeated rows and columns; then M has size at most (d +1)2d .

Proof. Assume for simplicity (and without loss of generality) that Id is contained in the upper

left corner of M . Then the first d columns of M , denoted by c1, . . . ,cd , are linearly independent,

and the first d entries of ci form the vector ei for i = 1, . . . ,d . Since rk(M) = d , every other

column ci , i > d , can be written as
∑d

j=1α
(i )
j c j for some coefficientsα(i )

j ’s. But the first d entries

of such ci are exactly α(i )
1 , . . . ,α(i )

d , hence, as M is 0/1, we have α(i )
j ∈ {0,1} for any i , j . Now,

consider a graph G with vertex set [d ], where node j and node k are adjacent if, for some i , we

haveα(i )
j =α(i )

k = 1. Clearly each column of M corresponds to a clique of G (including c1, . . . ,cd ,

which correspond to singletons). Notice also that two columns ci ,ch cannot correspond to

the same clique, as this would imply that α(i ) =α(h), hence that ci = ch . Now, for any row r

of M , consider its first d entries. If for some j < k ≤ d we have r j = rk = 1, then we cannot
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have α(i )
j = α(i )

k = 1 for any column i , otherwise the entry of M corresponding to r and ci

would be at least 2, a contradiction. Hence, each row of M corresponds to a stable set of G . As

before, notice that no two rows can correspond to the same stable set. But then we can apply

Corollary 2.6 to G : defining C ′,S ′ for G as in the corollary, we obtain that the size of M is at

most |C ′||S ′| ≤ (d +1)2d . �

Now, it easily follows that any 0/1 matrix with rank d , and no repeated rows of columns, cannot

have 2d rows and 2d columns. Assume that M has 2d rows: we will show that it satisfies the

hypothesis of the above claim, i.e. that it contains Id as a submatrix. Let c1, . . . ,cd linearly

independent columns of M , and let M ′ be M restricted to these columns. As argued before,

the rows of M ′ are all different: two rows that coincide in M ′ yield equal rows in M . But then

all possible 0/1 vectors must appear as rows of M ′, in particular M ′ (hence M) contains Id as a

submatrix. In conclusion, the claim implies that M has at most d+1 columns, and analogously,

if we assume that M has 2d columns, we obtain that M has at most d +1 rows, hence the

bound 4d cannot be tight.

One might wonder whether we can apply the above claim to the slack matrix of some inter-

esting 2-level polytopes, to bound its size. However, we now show that the hypotheses of

the claim are too strong to be satisfied by any interesting slack matrix. Let M be a minimal

0/1 slack matrix of a polytope P of dimension d , hence rk(M) = d +1, and assume that M

contains Id+1. We claim that P is the d +1-dimensional simplex and M = Id+1. The argument

is similar to the previous one and we only sketch it. Condition (ii) states that the vector with

all components equal to 1 belongs to the space generated by the rows of M . But this space

is generated by those rows r1, . . . ,rd+1 of M which contain Id+1, hence~1 =∑d+1
i=1 αi ri , which

implies similarly as before that αi = 1 for i = 1, . . . ,d +1. It then follows from the fact that

M has all distinct columns that M has exactly d +1 columns. Hence P is a d-dimensional

polytope with d +1 vertices, i.e. it is a simplex.
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3 On the extension complexity of the stable set
polytope of bipartite graphs

3.1 Introduction

We recall from Chapter 1 that the extension complexity xc(P ) of P is the minimum number of

facets of any extension of P . If Q is an extension of P with significantly fewer facets than P ,

then it is advantageous to run linear programming algorithms over Q instead of P .

One example of a polytope that admits a much more compact representation in a higher

dimensional space is the spanning tree polytope, STP(G). Edmonds’ [25] classic description of

STP(G) has 2Ω(|V |) facets. However, Wong [99] and Martin [79] proved that for every connected

graph G = (V ,E),

|E |6 xc(STP(G))6O(|V | · |E |).

Fiorini, Massar, Pokutta, Tiwary, and de Wolf [34] were the first to show that many polytopes

arising fromNP-hard problems (such as the stable set polytope) do indeed have high extension

complexity. Their results answer an old question of Yannakakis [100] and do not rely on any

complexity assumptions such as P 6=NP.

On the other hand, Rothvoß [86] proved that the perfect matching polytope of the complete

graph Kn has extension complexity at least 2Ω(n). This is somewhat surprising since the

maximum weight matching problem can be solved in polynomial-time via Edmond’s blossom

algorithm [26]. By now many accessible introductions to extension complexity are available

(see [59], [20], [21], [87]).

Let G = (V ,E) be a (finite, simple) graph with n := |V | and m := |E |, and let STAB(G) be its

stable set polytope, as defined in Section 1. As previously mentioned, STAB(G) can have very

high extension complexity. In [34], it is proved that if G is obtained from a complete graph

by subdividing each edge twice, then xc(STAB(G)) is at least 2Ω(
p

n). Recently, Göös, Jain, and

Watson [41] improved this to 2Ω(n/logn), via a different class of graphs. For perfect graphs,

Yannakakis [100] proved an upper bound of nO(logn), and it is an open problem whether
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Yannakakis’ upper bound can be improved to a polynomial bound.

In what follows we restrict our attention to bipartite graphs, which are perfect. Let G = (V ,E)

be a bipartite graph with n vertices, m edges and no isolated vertices. By total unimodularity,

STAB(G) = {x ∈RV | xu > 0 for all u ∈V , xu +xv 6 1 for all uv ∈ E } ,

and so n6 xc(STAB(G))6 n +m. In this case xc(STAB(G)) lies in a very narrow range, and it is

a good test of current methods to see if we can improve these bounds.

The situation is analogous to what happens with the spanning tree polytope of (arbitrary)

graphs, where as previously mentioned, we also know that xc(STP(G)) lies in a very narrow

range. Indeed, a notorious problem of Goemans (see [64]) is to improve the known bounds for

xc(STP(G)), but this is still wide open. However, for the stable set polytopes of bipartite graphs,

we are able to improve on the known bounds, as we summarize below.

Contribution and organization. The main results of the chapter are the following.

• We improve over the trivial upper bound on xc(STAB(G)), G bipartite: in particular we

prove that for any bipartite graph G with n vertices, the extension complexity of STAB(G)

is O(n2/logn). This is an improvement when G has quadratically many edges.

• We improve over the trivial lower bound on xc(STAB(G)), G bipartite: in particular we

find an infinite class of graphs such that the stable set polytope of every n-vertex graph

in the class has extension complexityΩ(n logn). These are the first known examples of

stable set polytopes of bipartite graphs where the extension complexity is more than

linear in the number of vertices. For instance, xc(STAB(Kn/2,n/2)) =Θ(n). As argued in

Chapter 1, our lower bound (see Theorem 3.11) is significant because no other non-

trivial lower bound on extension complexity is known even for the more general classes

of stable set polytopes of perfect graphs and of 2-level polytopes.

• We show that it is not possible to prove a better lower bound for our class of graphs using

our approach. At the core of this result lies a combinatorial problem which has been

studied independently by Kaibel and Averkov ([60]) under the name of ‘class covering’,

in the context of rectangle covers for the spanning tree polytope. We briefly describe

this connection and prove a lower bound on the size of class covers.

In Section 3.2 we define rectangle covers and fooling sets and we give examples of 3-regular

graphs with tight fooling sets. We prove Theorem 3.5 in Section 3.3 and Theorem 3.11 in

Section 3.4. In Section 3.5 we show that it is impossible to prove a better lower bound with

the approach in Section 3.4. Thus, to further improve the lower bound, different methods (or

different graphs) are required. We conclude the Chapter with Section 3.6, where we describe

the connection between a covering problem described in Section 3.5 and the class cover

problem.
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3.2 Rectangle Covers and Fooling Sets

Consider a polytope P := conv(X ) = {x ∈Rd | Ax > b}, where X := {x(1), . . . , x(n)} ⊆Rd , A ∈Rm×d

and b ∈Rm . Recall from Section 1 that the slack matrix of P (with respect to the chosen inner

and outer descriptions of the polytope) is the matrix S ∈ Rm×n
>0 having rows indexed by the

inequalities A1x > b1, . . . , Am x > bm and columns indexed by the points x(1), . . . , x(n), defined

as Si j := Ai x( j ) −bi > 0.

We recall that Yannakakis [100] proved that the extension complexity of P equals the nonnega-

tive rank of S (see Theorem 1.5). In this chapter, we only rely on a lower bound that follows di-

rectly from this fact. For a matrix M , we define the support of M as supp(M) := {(i , j ) | Mi j 6= 0}.

A rectangle is any set of the form R = I × J , with R ⊆ supp(M). A size-k rectangle cover of M is

a collection R1, . . . ,Rk of rectangles such that supp(M) = R1 ∪·· ·∪Rk . The rectangle covering

bound of M is the minimum size of a rectangle cover of M , and is denoted rc(M).

Theorem 3.1 (Yannakakis, [100]). Let P be a polytope with dim(P )> 1 and let S be any slack

matrix of P. Then, xc(P )> rc(S).

A fooling set for M is a set of entries F ⊆ supp(M) such that Mi` · Mk j = 0 for all distinct

(i , j ), (k,`) ∈ F . The largest size of a fooling set of M is denoted by fool(M). Clearly, rc(M)>
fool(M).

Let G be a bipartite graph. The edge vs stable set matrix of G , denoted M(G), is the 0/1 matrix

with a row for each edge of G , a column for each stable set of G , and a 1 in position (e,S) if

and only if e ∩S =∅ (as usual, we regard edges as pairs of vertices). We say that G has a tight

fooling set if M(G) has a fooling set of size |E (G)|. Note that if G has a tight fooling set, then the

non-negative rank of M(G) is exactly |E(G)|. Also observe that the property of having a tight

fooling set is closed under taking subgraphs.

It is easy to check that even cycles have tight fooling sets. We now give an infinite family of

3-regular graphs that have tight fooling sets. A graph is C4-free if it does not contain a cycle of

length four.

Theorem 3.2. Let G = (V ,E) be a 3-regular, C4-free bipartite graph. Then G has a tight fooling

set.

Proof. For X ⊆V , we let N (X ) denote the set of neighbours of X . Let V = A∪B be a bipartition

of the vertex set, and let φ : E → {1,2,3} be a proper edge coloring of G , which exists by 3-

regularity and König’s edge-coloring theorem (see e.g. [91, Theorem 20.1]). For each vertex

a ∈ A, we name its neighbors a1, a2, a3 ∈ B so that φ(aai ) = i . For each a ∈ A, consider the
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Chapter 3. On the extension complexity of the stable set polytope of bipartite graphs

following stable sets:

Saa1
:= A \ {a}

Saa2
:= {a1}∪ {a′ ∈ A | a′ ∉ N (a1)}

Saa3
:= B \ {a3} .

This defines a stable set Se disjoint from e, for every edge e ∈ E . Since φ is proper, no two of

these stable sets are equal. We claim that {(e,Se ) | e ∈ E } is a fooling set in the edge vs stable set

matrix of G .

Let e and f be distinct edges. We want to show that Se intersects f or S f intersects e. Consider

the following three cases. Let e = aai , where i =φ(e).

Case 1. If φ(e) = 1, then Se = Saa1 intersects f unless f = aai for some i ∈ {2,3}. In both cases

we have a1 ∈ S f ∩e.

Case 2. If φ(e) = 3, then Se = Saa3 intersects f unless f = a′a3 for some a′ ∈ A. Either φ( f ) = 1

and S f intersects e (as in Case 1), or φ( f ) = 2. In the last case, since G is C4-free, we have

a ∉ N (a′
1). It follows that S f = Sa′a3 = Sa′a′

2
intersects e.

Case 3. If φ(e) = 2, then we may also assume φ( f ) = 2 since otherwise by exchanging the roles

of e and f we are back to one of the previous cases. Let a′ denote the endpoint of f in A, so

that f = a′a′
2. Because φ is proper, a′ 6= a and a′

1 6= a1. Since G is C4-free, we have a ∉ N (a′
1) or

a′ ∉ N (a1). Hence, a ∈ S f ∩e or a′ ∈ Se ∩ f . �

Note that there are infinitely many 3-regular, C4-free bipartite graphs. For example, we can

take a hexagonal grid on a torus.

3.3 An Improved Upper Bound

In this section we prove Theorem 3.5. We use the following result of Martin [79].

Lemma 3.3. If Q is a nonempty polyhedron, γ ∈R, and

P = {x | 〈x, y〉6 γ for every y ∈Q},

then xc(P )6 xc(Q)+1.

The edge polytope Pedge(G) of a graph G is the convex hull of the incidence vectors in RV (G)

of all edges of G . The second ingredient we need is the following bound on the extension

complexity of the edge polytope of all n-vertex graphs due to Fiorini, Kaibel, Pashkovich, and

Theis [33, Lemma 3.4]. This bound follows from a nice result of Tuza [96], which states that
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every n-vertex graph can be covered with a set of bicliques of total weight O(n2/logn), where

the weight of a biclique is its number of vertices.

Lemma 3.4. For every graph G with n vertices, xc(Pedge(G)) =O(n2/logn).

We are now in position to prove our upper bound:

Theorem 3.5. For all bipartite graphs G with n vertices, the extension complexity of STAB(G) is

O(n2/logn).

Proof. Let G = (V ,E). Since

STAB(G) =RV
>0 ∩ {x ∈RV | 〈x, y〉6 1 for every y ∈Pedge(G)},

By Lemmas 3.3 and 3.4, the extension complexity of STAB(G) is O(n2/logn). �

3.4 An Improved Lower Bound

In this section we describe a class of bipartite graphs whose stable set polytope has super-

linear extension complexity. The examples we use are incidence graphs of finite projective

planes. We will not use any theorems from projective geometry, but the interested reader can

refer to [24].

Let q be a prime power, GF(q) be the field with q elements, and PG(2, q) be the projective

plane over GF(q). The incidence graph of PG(2, q), denoted I (q), is the bipartite graph with

bipartition (P ,L ), where P is the set of points of PG(2, q), L is the set of lines of PG(2, q),

and p ∈P is adjacent to ` ∈L if and only if the point p lies on the line `. For example, PG(2,2)

and its incidence graph I (2) are depicted in Figure 3.1.
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Figure 3.1 – PG(2,2) and its incidence graph I (2).

Before proving our lower bound we gather a few lemmas on binomial coefficients. The first

two are well-known, so we omit the easy proofs.
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Chapter 3. On the extension complexity of the stable set polytope of bipartite graphs

Lemma 3.6. For all integers h and c with h> c > 0

h∑
j=c

(
j

c

)
=

(
h +1

c +1

)
.

Lemma 3.7. For all positive integers x, y, and h,

h∑
j=0

(
x + j

j

)(
h + y − j

h − j

)
=

(
x + y +h +1

h

)
.

Lemma 3.8. Let q,c, t be positive integers with c + t 6 q +1. Then

t
q+1−t∑

k=c

1

k

(
q +1− t − c

k − c

)(
q

k

)−1

=
(

t + c −1

t

)−1

6
1

c
.

Proof. We have that

t
q+1−t∑

k=c

1

k

(
q +1− t − c

k − c

)(
q

k

)−1

= t (q +1− t − c)!

q !

q+1−t∑
k=c

(k −1)!(q −k)!

(k − c)!(q +1− t −k)!

= t (q +1− t − c)!

q !
(c −1)!(t −1)!

q+1−t∑
k=c

(
k −1

c −1

)(
q −k

t −1

)
.

Moreover,

q+1−t∑
k=c

(
k −1

c −1

)(
q −k

t −1

)
=

q+1−t−c∑
j=0

(
c −1+ j

c −1

)(
q − c − j

t −1

)

[h = q +1− t − c, x = c −1, y = t −1] =
h∑

j=0

(
x + j

j

)(
h + y − j

h − j

)

[by Lemma 3.7] =
(

x + y +h +1

h

)

=
(

q

q +1− t − c

)
.

We conclude that

t
q+1−t∑

k=c

1

k

(
q +1− t − c

k − c

)(
q

k

)−1

= t (q +1− t − c)!

q !

q !(c −1)!(t −1)!

(q +1− t − c)!(t + c −1)!

=
(

t + c −1

t

)−1

.
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The number of t-subsets of a set of size t + c −1 is at least c, since it includes all t-subsets

containing a fixed set of size t −1. Hence,
(t+c−1

t

)−1
6 1

c . �

From the definition of PG(2, q) it follows that that I (q) is (q +1)-regular, |V (I (q))| = 2(q2 +
q +1), and |E (I (q))| = (q +1)(q2+q +1). Let n = q2+q +1 and note that I (q) has 2n vertices.

We let P and L denote the set of points and lines of PG(2, q). We also use the fact that I (q)

is C4-free.

We denote the edge vs stable set incidence matrix of I (q) by Sq . Each 1-entry of Sq is of the

form (e,S) where e ∈ E , S ⊆ V is a stable set, and e ∩S =∅. To prove Theorem 3.11 we will

assign weights to the 1-entries of Sq in such a way that the total weight is at leastΩ(n logn),

while the weight of every rectangle is at most 1. The only entries that will receive non-zero

weight are what we call special entries, which we now define.

Definition 3.9. A 1-entry of Sq is special if it has the form (e,S(X )) where

• e = p` with p ∈P ,` ∈L ,

• X ⊆ N (`) \ {p}, X non-empty,

• S(X ) = X ∪ (L \ N (X )).

We also need the following compact representation of maximal rectangles.

Definition 3.10. Let R be a maximal rectangle. Then R is determined by a pair (PR ,LR ) with

PR ⊆P , LR ⊆L , where the rows of R are all the edges between PR and LR and the columns

of R are all the stable sets S ⊆V \ (PR ∪LR ).

We are now ready to prove our lower bound.

Theorem 3.11. Let q be a prime power and n = q2 +q +1. Then there exists a constant c > 0

such that

xc(STAB(I (q)))> cn logn.

Proof. Let n = q2 +q +1. Let V =P ∪L be the vertices of I (q), and E be the edges of I (q).

To each special entry (e,S(X )) we assign the weight

w(e,S(X )) = 1

|X |( q
|X |

)
(q +1)

.

All other entries of Sq receive weight zero.

Claim 3.12. w(Sq ) :=∑
(e,S) w(e,S)> cn logn for some constant c.
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Subproof. We have that

∑
(e,S)

w(e,S) = ∑
(e,S(X )) special

w(e,S(X )) = ∑
e∈E

q∑
k=1

(
q

k

)
1

k
(q

k

)
(q +1)

= |E |
q +1

q∑
k=1

1

k
= n

q∑
k=1

1

k
> cn logn.

The claim follows. �

Let R = (PR ,LR ) be an arbitrary maximal rectangle. We finish the proof by showing that

w(R) :=∑
(e,S)∈R w(e,S)6 1. Together with Claim 3.12 this clearly implies Theorem 3.11. We

will need the following obvious but useful Claim.

Claim 3.13. A special entry (p`,S(X )) is covered by R = (PR ,LR ) if and only if X ∩PR =∅,

LR ⊆ N (X ), p ∈PR , and ` ∈LR .

We consider two cases. First suppose that LR = {`} for some `. Then the only special entries

covered by R are of the form (p`,S(X )), with X ⊆ N (`) \ PR . Let N (`)∩PR = {p1, . . . ,pt },

where 16 t 6 q +1. To compute w(R) we have to sum over all edges pi` and over all subsets

X ⊆ N (`) \ {p1, . . . ,pt }. It follows that

w(R) =
t∑

i=1

q+1−t∑
k=1

(
q +1− t

k

)
1

k
(q

k

)
(q +1)

= t
q+1−t∑

k=1

(q +1− t )!

k !(q +1− t −k)!

k !(q −k)!

kq !(q +1)

= t (q +1− t )!(t −1)!

(q +1)!

q+1−t∑
k=1

(
q −k

q +1− t −k

)
1

k

= 1(q+1
t

) q+1−t∑
k=1

(
q −k

t −1

)
1

k
6

1(q+1
t

) q−1∑
j=t−1

(
j

t −1

)
= 1(q+1

t

)(
q

t

)
6 1,

where the last equality follows from Lemma 3.6.

The remaining case is if |LR |> 2. For ` ∈LR such that (p`,S(X )) is covered by R for some p, X ,

define

k` = min{|X | | there exist p, X : (p`,S(X )) is a special entry covered by R}.

Claim 3.14. Let (p`,S(X )) be a special entry covered by R such that |X | = k`. Then for each

p′,Y such that R covers (p′`,S(Y )), we have X ⊆ Y .

Subproof. For each `′ ∈ LR \ {`} (there is at least one since |LR | > 1), we have `′ ∈ N (X ) by

Claim 3.13. That is, there is x = x(`′) ∈ X adjacent to `′. Similarly, since `′ ∈ N (Y ), there is

y = y(`′) ∈ Y adjacent to `′. Now, if x(`′) 6= y(`′), then I (q) contains a 4-cycle, which is a
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3.5. A small rectangle cover of the special entries

contradiction. Hence we must have x(`′) = y(`′) for all `′ ∈LR \ {`}. Now if there is an x ∈ X

such that x 6= x(`′) for every `′ ∈LR \{`}, then (p`,S(X \{x})) is still covered by R , contradicting

the minimality of X . We conclude X ⊆ Y , as required. �

Now fix ` ∈LR , and let

w(`) =∑
{w(p`,S(X )) | (p`,S(X )) special}.

Claim 3.15. For every ` ∈LR ,

w(`)6
1

(q +1)k`
.

Subproof. Let N (`)∩PR = {p1, . . . ,pt }, where 16 t 6 q +1. Let X be such that (p`,S(X )) is a

special entry covered by R and |X | = k`. By Claim 3.14, the only special entries appearing in

the above sum are of the form (pi`,S(Y )) where i ∈ [t ] and X ⊆ Y ⊆ (P \PR )∩N (`). Therefore

w(`)6 t
q+1−t∑
k=k`

(
q +1− t −k`

k −k`

)
1

k
(q

k

)
(q +1)

6
1

(q +1)k`
,

where the last inequality follows from Lemma 3.8 with c = k`. �

Claim 3.16. For every ` ∈LR , |LR |6 (q +1)k`.

Subproof. Again, let X be such that (p`,S(X )) is covered by R and assume that |X | = k`. By

Claim 3.13, we have LR ⊆ N (X ).

Hence |LR |6 |N (X )|6 (q +1)|X | = (q +1)k`. �

By Claim 3.15 and Claim 3.16, for every ` ∈LR , w(`)6 1
|LR | . But clearly w(R) =∑

`∈LR
w(`),

and so w(R)6 1, as required. This completes the entire proof. �

3.5 A small rectangle cover of the special entries

In this section we show that the submatrix of special entries considered in the previous section

has a rectangle cover of size O(n logn). Combined with Theorem 3.11, this implies that a

minimal set of rectangles that cover all the special entries always has sizeΘ(n logn). Thus, to

improve our bound, we must consider a different set of entries of the slack matrix, or use a

different set of graphs.

This cover will be built from certain labeled trees which we now define. Note that the length of

a path is its number of edges.

Definition 3.17. For every integer k > 1, we build a tree T (k) recursively:
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• The tree T (1) consists of a root r and a single leaf attached to it.

• For k > 1, we construct T (k) by first identifying one end of a path P1 of length k1 :=
⌈

k
2

⌉
to another end of a path P2 of length k2 :=

⌊
k
2

⌋
along a root vertex r . Let λi be the end of

Pi that is not r . We then attach a copy of T (ki ) to λ3−i , identifying λ3−i with the root of

T (ki ). We call P1 and P2 the main paths of T (k).

The next Lemma follows easily by induction on k.

Lemma 3.18. For all k > 1,

1. T (k) has O(k logk) vertices;

2. T (k) has k leaves;

3. every path from the root r to a leaf has length k.

Definition 3.19. We recursively define a labeling ϕk : V (T (k)) \ {r } → [k] as follows:

• Let v be the non-root vertex of V (T (1)) and set ϕ1(v) := 1.

• For k > 1, let P1 and P2 be the main paths of T (k). We name the vertices of P1 as

r, v1, . . . , v⌈
k
2

⌉ and P2 as r, v⌈
k
2

⌉+1, . . . , vk , where these vertices are listed according to their

order along P1 and P2. Set k1 :=
⌈

k
2

⌉
and k2 :=

⌊
k
2

⌋
. Note that V (T (k)) =⋃

i=1,2(V (Pi )∪
V (Bi )), where Bi is a copy of the tree T (k3−i ). We define

ϕk (v) =


i , if v = vi

ϕk2 (v)+k1, if v ∈V (B1) \V (P1)

ϕk1 (v), if v ∈V (B2) \V (P2)

For each vertex v ∈ T (k) we let P (v) be the path in T (k) from r to v .

Lemma 3.20. Let ϕk , B1, and B2 be as in Definition 3.19.

1. If L is the set of leaves of T (k), then ϕk (L∩V (B1)) = {
⌈

k
2

⌉
+1, . . . ,k} and ϕk (L∩V (B2)) =

{1, . . . ,
⌈

k
2

⌉
}.

2. For every leaf λ of T (k), ϕk (V (P (λ)) \ {r }) = [k].

3. Each label i ∈ [k] occurs at most dlogke+1 times in the labeling of T (k).
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Figure 3.2

Proof. We proceed by induction on k. Property 1 follows directly from the recursive definition

of the labeling ϕk .

For 2, let λ be a leaf and let the (ordered) vertices of P (λ) be r, p1, . . . , pk = λ. Suppose that

λ ∈V (Bi ). Then P (λ) := Pi ∪P ′, where Pi is a main path of T (k) and P ′ is the path in Bi going

from the root of Bi to λ. Property 2 now follows by induction and the definition of ϕk .

For 3, first suppose that the label i is in [k1]. Then i appears exactly once in the labeling of the

main path P1 of T (k), it does not figure in the labeling of the nodes V (P2)∪ (V (B1) \ V (P1)),

and, by the inductive step, it occurs dlogdk
2 ee+1 = dlogke times in ϕk (B2). The thesis follows.

A similar argument settles the remaining case i ∈ [k] \ [k1]. �

Henceforth, we simplify notation and denote the labeling ϕk of T (k) as ϕ. We now recall some

notation from the previous section. Let q be a prime power and Sq be the edge vs stable set

incidence matrix of I (q).

A maximal rectangle R = (PR ,LR ) is centered if |LR |> 2 and there is a point c ∈P \PR such

that c is incident to all lines in LR . We call c the center of R . Note that the center is unique and

its existence implies that |LR |6 q +1.

One way to create centered rectangles is as follows. Let ` be a line, c be a point on `, and Y ⊆
N (`) with c ∈ Y . We let c,`,Y be the centered rectangle R = (PR ,LR ) where PR = N (`) \ Y

and LR = N (c). Note that a special entry of the form (p`,S(X )) is covered by the centered

rectangle c,`,Y if and only if p ∉ Y and c ∈ X ⊆ Y .

We now fix a line ` ∈PG(2, q) and let N (`) = {p1, . . . ,pq+1}. We will use the labelingϕ of T (q+1)

to provide a collection of centered rectangles that cover all special entries of the form (p`,S(X )).

Recall that for a vertex v of T (q +1), P (v) denotes the path in T (q +1) from r to v . If v is
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neither the root nor a leaf of T (q +1), we define

Y (v) := {pϕ(u) | u is a non-root vertex of P (v)}.

Lemma 3.21. Fix a line ` ∈PG(2, q) and let N (`) = {p1, . . . ,pq+1}. Let R` be the collection of all

centered rectangles pϕ(v),`,Y (v) where v ranges over all non-root, non-leaf vertices of T (q+1).

Then every special entry (e,S) with ` incident to e is covered by some rectangle R ∈R`.

Proof. Let (pi`,S(X )) be such a special entry and let λ be the (unique) leaf of T (q +1) such

that ϕ(λ) = i . Name the vertices of P (λ) as r,u1, . . . ,uq+1 =λ (ordered away from the root).

Define j = max{i | pϕ(ui ) ∈ X }. Since pϕ(λ) ∉ X , note j < q +1. By Lemma 3.20, X ⊆ Y (u j ).

Also, by construction, pϕ(u j ) ∈ X and p ∉ Y (u j ). We conclude that the centered rectangle

pϕ(u j ),`,Y (u j ) covers the special entry (pi`,S(X )), as required. �

By Lemma 3.21, for each line `, there is a set R` of O(q log q) centered rectangles that cover

all special entries of the form (p`,S(X )). By taking the union of all R`, we get a cover R of

size O(nq log q) for all the special entries. To prove the main theorem of this section, we now

reduce the size of R by a factor of q .

Theorem 3.22. There is a set of O(n logn) centered rectangles that cover all the special entries.

Proof. If R1 := c,`1,Y1 , . . . ,Rk := c,`k ,Yk are centered rectangles with the same center c, we

let
∑k

i=1 Ri = R be the maximal rectangle with PR =⋃k
i=1 N (`i ) \

⋃k
i=1 Yi and LR = N (c). Note

that
∑k

i=1 Ri is also a centered rectangle with center c.

Claim 3.23. If R1 := c,`1,Y1 , . . . ,Rk := c,`k ,Yk are centered rectangles such that `1, . . . ,`k

are all distinct, then
∑k

i=1 Ri covers all special entries covered by
⋃k

i=1 Ri .

Subproof. Let (p`,S(X )) be a special entry covered by some c,` j ,Y j . Clearly c ∈ X ⊆ Y j ⊆⋃k
i=1 Yi . By contradiction, suppose p ∈⋃k

i=1 Yi . Since p ∉ Y j , p ∈ Y j ′ ⊆ N (` j ′) for some j ′ 6= j .

But then c` jp` j ′ is a 4-cycle in I (q), which is a contradiction. Hence the entry (p`,S(X )) is

also covered by
∑k

i=1 Ri . �

We iteratively use Claim 3.23 to reduce the number of rectangles in our covering R. For each

point c, name the q +1 lines through c as `,`1, . . . ,`q , so that among R`,R`1 , . . . ,R`q , the

collection R` has the most rectangles with center c. Note that, by Lemma 3.20, R` contains

O(log q) rectangles with center c.

Fix i ∈ [q] and for each rectangle R ∈R`i with center c choose a rectangle fi (R) with center c

in R` such that fi (R) 6= fi (R ′) if R 6= R ′. For each R ∈R` we let

f −1(R) = {R}∪
q⋃

i=1
{R ′ ∈R`i | fi (R ′) = R}.
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We then remove all rectangles with center c that appear in R`,R`1 , . . . ,R`q and replace them

with all rectangles of the form
∑

R ′∈ f −1(R) R ′, where R ranges over all rectangles in R` with

center c. In doing so, we obtain at most O(log q) =O(logn) rectangles with center c. Repeating

for every c ∈P gives us O(n logn) rectangles in total. �

3.6 A connection with rectangle covers of the spanning tree poly-

tope

In the previous section we dealt with the problem of covering special entries of the slack matrix

Sq with centered rectangles. While this problem may seem at first very specific, in this section

we will show that it is equivalent to the class cover problem, that has been introduced by Kaibel

and Averkov in [60] in the context of finding rectangle covers for the spanning tree polytope.

We first define class covers and show its connections with Section 3.5, as well as a lower bound

on the size of class covers which uses the same technique as in the proof of Theorem 3.11.

Then, we describe how this problem is related to the extension complexity of the spanning

tree polytope and we conclude with some open questions on the topic.

3.6.1 The class covering problem

Let n ≥ 2 be a natural number. Given t ∈ [n] and ; 6= S ⊂ [n]− t , we call a couple (t ,S) a class.

Definition 3.24. A class cover of [n] is a family C of classes, such that for every s ∈ [n] and

; 6= X ⊂ [n]− s there is a class (t ,S) ∈C with s ∈ S, t ∈ X and S ∩X =; (in this case we say that

the class covers (s, X )). We define κ(n) to be the minimum size of a class cover of [n].

A natural, informal interpretation of the problem is as follows: a class (t ,S) is formed by a

teacher t and a set S of students, and a subject is identified with the set X of people who can

be a teacher for the subject. Then a class cover is a family of classes such that every student

s can “learn” any subject X through an appropriate class, where we require that none of the

students knows the subject (S ∩X =;).

As an example, consider the family C = {(t , {s}) : s, t ∈ [n], s 6= t }. It is easy to check that C is a

class cover, which implies κ(n) <O(n2).

The following has been shown by Kaibel and Averkov [60]:

Theorem 3.25. κ(n) =O(n logn).

The reader might notice that this bound is the same as in Theorem 3.22. This is not a coin-

cidence, in fact in Section 3.6.2 we will derive Theorem 3.25 as a corollary of the results in

Section 3.5.
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We now show that the bound is asymptotically tight, i.e. κ(n) =Θ(n logn). The proof uses a

very similar technique as in Theorem 3.11. This is joint work with Jana Cslovjecsek.

Theorem 3.26. Let C be a class cover for [n], then C has sizeΩ(n logn).

Proof. To every couple (s, X ) with ; 6= X ⊂ [n]− s, we assign the following weight:

w(s, X ) = 1

|X |(n−1
|X |

) .

Recall that a class (t ,S) covers (s, X ) if s ∈ S, t ∈ X and S∩X =;. We refer to the weight ‘covered’

by the class as the sum of the weight of all couples (s, X ) covered by the class. We will show

that the total weight of all the couples (s, X ) is at least cn logn for some positive constant c,

which means that the classes in C have to cover a weight of at least cn logn. On the other hand

we show that a single class covers a weight of 1, which implies that we need at least cn logn

different classes to cover all couples (s, X ).

First we calculate the total weight of all couples (s, X ):

∑
(s,X )

w(s, X ) = ∑
s∈[n]

∑
X⊂[n]\s

1

|X |(n−1
|X |

) = ∑
s∈[n]

n−1∑
k=1

(
n −1

k

)
1

k
(n−1

k

) = n ·
n−1∑
k=1

1

k
≥ cn logn,

where again c > 0 is an appropriate constant.

We now calculate the weight covered by a single class (t ,S):

∑
(s,X ):S∩X=;,

s∈S,t∈X

w(s, X ) = ∑
s∈S

∑
t∈X⊂[n]\S

1

|X |(n−1
|X |

) = ∑
s∈S

n−|S|∑
k=1

(
n −|S|−1

k −1

)
1

k
(n−1

k

)
= |S|

n−|S|∑
k=1

(n −1−|S|)!

(k −1)!(n −k −|S|)!

k !(n −1−k)!

k(n −1)!

=
n−|S|∑
k=1

(n −1−|S|)!|S|!
(n −1)!

(n −1−k)!

(|S|−1)!(n −k −|S|)!

=
n−|S|∑
k=1

1(n−1
|S|

)(
n −1−k

|S|−1

)
= 1(n−1

|S|
) n−|S|∑

k=1

(
n −1−k

|S|−1

)
= 1(n−1

|S|
)(

n −1

|S|

)
= 1

where the second to last equation comes from Lemma 3.6.

�

3.6.2 Special entries, centered rectangles and class covers

We recall that in Section 3.5 we defined centered rectangles and described a cover of all special

entries of Sq (slack matrix of I (q)) with centered rectangles. To obtain this we first, for every
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line ` ∈PG(2, q), gave a covering R` of all the special entries (e,S) with ` incident to e, and

then merged the covers in one. We now show how this problem is related to the class covering

problem.

Theorem 3.27. Let q be a prime power and Sq be the edge vs stable set incidence matrix of

I (q). For a fixed line ` ∈ PG(2, q), let CR` be the set of centered rectangles of Sq of the form

R = (PR ,LR ) with PR = N (`) \ Y and LR = N (c) for some c ∈ Y ⊂ N (`), and SE` be the set of

special entries (e,S) of Sq with ` incident to e. Then the problem of covering entries in SE` with

rectangles in CR` is equivalent to finding a class cover for [n], with n = q +1.

Proof. Each rectangle in CR` can be described by the couple (c,Y ), with c ∈ Y ⊂ N (`), and

each special entry in SE` is given by a couple (p, X ) where p ∈ N (`) and X ⊆ N (`) \ {p}. Now,

recall that a centered rectangle (c,Y ) covers a special entry (p, X ) if and only if

• p ∈ N (`) \ Y , and

• c ∈ X ⊆ Y .

Mapping the points in N (`) to [n] (recall that I (q) is q +1-regular), we can consider (p, X ) as

a pair of a student and a subject and (c, [n] \ Y ) as a class, and the equivalence becomes now

clear: (p, X ) is covered by the class (c, [n] \ Y ) if and only if p ∈ [n] \ Y ,c ∈ X , X ∩ [n] \ Y =;, i.e.

X ⊂ Y . �

As a consequence of Theorem 3.27, we can use the construction from Section 3.5 to obtain

a class cover for [n] of size Θ(n logn), proving Theorem 3.25. In particular, given the tree

T (n) with labeling ϕ : V (T (n)) → [n] defined in Section 3.5, let S(v) = [n] \ϕ(V (P (v))) for any

non-root, non-leaf vertex v of T (n), i.e. S(v) is the set of labels on any path from v to a leaf of

T (n), such that the path does not go through the root of T (n). Notice that, thanks to Lemma

3.20, part 2, S(v) does not depend on which path we choose. Then it is easy to check that the

set C = {(ϕ(v),S(v)) : v ∈V (T (n))} is a class cover for [n] of size |V (T (n))| =Θ(n logn). For an

example, consider the tree T (3) and its labeling, as described in Figure 3.2a. The resulting

class cover is formed by the following classes: (1, {2}), (1, {2,3}), (2, {1}), (2, {3}), (3, {1,2}). Class

covers constructed this way are asymptotically optimal thanks to Theorem 3.26.

3.6.3 Spanning tree polytopes

As already mentioned at the beginning of this chapter, obtaining more precise bounds on the

extension complexity of the spanning tree polytope STP(G) is an open problem, on which

almost no progress has been done since the extended formulation of Wong [99] and Martin

[79]. For G = Kn , we have that Ω(n2) = xc(STP(Kn)) = O(n3). In [65], Khoshkhah and Theis

prove that using the rectangle covering bound defined in Section 3.2 cannot help to improve

the lower bound on xc(STP(Kn)) apart from a logarithmic factor.
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Theorem 3.28. [65] Let SSTP
n be the slack matrix of STP(Kn), then rc(SSTP

n ) ≤O(n2 logn).

In the original proof, the bound is obtained through a connection with communication

complexity and the rectangle cover is only implicitly given. In [60] Kaibel and Averkov give an

explicit rectangle cover proving Theorem 3.28, using class covers.

For the complete graph Kn = (V ,E), we have:

STP(Kn) = {x ∈RE :
∑

e∈E(U ) xe ≤ |U |−1 ∀U ⊂V , |U | > 1

xe ≥ 0 ∀e ∈ E∑
e∈E xe = n −1 }.

(3.1)

We only consider the submatrix SSTP′
n of SSTP

n corresponding to the first set of inequalities,

as the rest can be trivially covered by O(n2) rectangles (we refer to [65] for further details).

For U ⊂ V and a tree T , SSTP′
n has as entry (U ,T ) the number of connected components in

(U ,T (U )) minus 1. In particular, an entry (U ,T ) is non-zero if T (U ) is not connected.

Theorem 3.29. [60] For n ≥ 2, rc(SSTP′
n ) ≤ n ·κ(n)

Proof. For A,B disjoint non-empty subsets of V = [n] and T a spanning tree of Kn , we say that

(A,B) is a T -disconnector if there exist u, v ∈ A such that the path from u to v on T has a node

in B . The following can be easily seen to be a rectangle of SSTP′
n :

R(A,B) = {U : A ⊆U ⊆ [n] \ B}× {T spanning tree : (A,B) is a T -disconnector }

Now, let C be a class cover for [n]. We will show that the set

R = {R({v, t },S) : (t ,S) ∈C , v ∈ [n] \ (S ∪ {t })}

is a rectangle covering for SSTP′
n , which concludes the proof.

We need to show that for every non zero entry (U ,T ) of the slack matrix there exists R(A,B) ∈R

such that (U ,T ) ∈ R(A,B). Since the entry (U ,T ) is non zero we have that T (U ) is disconnected.

Let u, v be in two different connected components of U . Then there is a vertex w on the path

between u and v which is not in U . Since C is a class cover, in correspondence of the student-

subject pair (w,U ) there is a class (t ,S) ∈C such that t ∈U ⊆ [n] \ S, w ∈ S. Now, we have that

w is on the path of T between t and v , or between t and u: assume without loss of generality

that the first case holds. Then (U ,T ) ∈ R({t , v},S): indeed, {t , v} ⊆U ⊆ [n] \ S and ({t , v},S) is a

T -disconnector. �

Now Theorem 3.28 follows directly from Theorem 3.25.
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As we have shown, the class covering problem has been successfully used for constructing rect-

angle covers in two apparently unrelated settings. Whether it could be applied to investigate

the extension complexity of other problems is a fascinating question. Moreover, Theorem 3.28

does not rule out that aΩ(n2 logn) lower bound for xc(STP(Kn)) could be proved by rectangle

covering techniques. While such a bound is not directly implied by Theorem 3.11 and 3.26, it

might be possible to attack the problem with the method used to prove those theorems.
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4 Slack matrices of 2-level polytopes: recogni-
tion and decomposition

4.1 Introduction

Slack matrices are interesting mathematical objects that carry information on the vertex-facet

adjacency structure of a polytope and on its extension complexity, as we already discussed in

Chapter 1. In an attempt to shed light on the properties of such matrices, in [47] Gouveia et

al. give some geometric characterizations of slack matrices and study the following problem:

given a non-negative matrix M , can we decide in polynomial time whether M is the slack

matrix of some polytope? The authors prove that this problem, called slack matrix recognition

problem, is equivalent to the following: given P = {x ∈Rd : Ax ≤ b}, and Q = conv{v1, . . . , vn} ⊆
P , decide whether Q = P . This is known as the Polyhedral Verification problem, a central

problem in computational geometry whose complexity is unknown ([61]). It is therefore

natural to try to find polynomial algorithms for recognizing restricted classes of slack matrices.

In particular we focus on 0/1 slack matrices: those are exactly the slack matrices of 2-level

polytopes. It is not clear how to approach such a problem since, as argued in the introduction,

we are far from a complete understanding of 2-level polytopes and their slack matrices. On

the other hand, progress on this problem would most likely advance our knowledge on 2-

level polytopes. In this chapter we will describe some algorithmic results on the recognition

of certain sub-classes of 0/1 slack matrices. We will also define some operations on (slack

matrices of) polytopes that preserve 2-levelness, which can be seen as modifications of the

operation of cartesian product (see Section 1.1). Our study of such operations is motivated

by their application in recognizing slack matrices of 2-level matroid polytopes. We recall (see

Theorem 2.21) that matroids whose base polytope is 2-level arise from uniform matroids by

applying 1-sums and 2-sums (we refer to Section 2.4 for the relevant definitions). By studying

such operations in the context of slack matrices, we are able to recognize slack matrices of

2-level matroid polytopes in polynomial time. Moreover, we define the more general operation

of k-sum of slack matrices and we investigate its properties. This might lead to decomposition

results that would have high impact on the open question on 2-level polytopes.

Contribution and organization.

The chapter is organized as follows:
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• after introducing some basic properties of slack matrices, we define the operations of

1-sum and k-sum, for k ≥ 2, in Section 4.2, prove some of their properties and present

some experimental evidence for the relevance of such operations in the context of

2-level polytopes.

• In Section 4.3 we investigate slack matrices of stable set polytopes of perfect graphs: we

characterize when such matrices are k-sums and also provide a simple algorithm for

recognizing them.

• We then study the problem of recognizing matrices that are k-sums, and provide efficient

algorithms in Section 4.4. At the core of such algorithms is a connection between the

1-sum operation and mutual entropy, a function used in information theory.

• The results obtained are applied to the recognition of slack matrices of 2-level matroid

polytopes in Section 4.4.4.

• To conclude, in Section 4.5 we describe an alternative approach for the latter problem,

which might be applicable to a larger class of matroid polytopes.

4.1.1 Preliminaries

For the definition of slack matrix, we refer the reader to Definition 1.3. In [47], the authors

characterize slack matrices of polytopes. For a matrix S, we denote the collection of column

vectors of S by col(S).

Theorem 4.1 ([47]). For a nonnegative matrix S in Rm×n of rank at least 2, the following

statements are equivalent:

1. S is the slack matrix of a polytope;

2. conv(col(S)) = aff(col(S))∩Rm+ ;

3. Rm ·S ∩Rn+ =Rm+ ·S and 1 ∈Rm ·S holds;

4. S ·Rn ∩Rm+ = S ·Rn+ and 1 ∈Rm ·S holds.

Throughout the chapter, we will assume that all the matrices we deal with are of rank at least

2, so to apply Theorem 4.1 directly. We also recall the following useful fact:

Lemma 4.2. [47] Let S be a slack matrix of a polytope P, then P is affinely isomorphic to

conv(col(S)). In addition, we have dim(P ) = rk(S)−1.

Recall that the slack matrix of a polytope P is not unique, as it depends on the given horizontal

and vertical representations of P . We say that a slack matrix is non-redundant if the two

representations are, i.e. if the matrix has exactly as many rows as P has facets and as many
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columns as P has vertices. Non-redundant slack matrices do not contain two identical rows or

columns, nor rows or columns which are all zeros, or all non-zeros. In light of Lemma 4.2, using

linear programming one can efficiently check whether some columns are redundant (i.e. are

contained in the convex hull of the others). To check whether a (not all-zero) row is redundant

it suffices to check whether its set of zeros (i.e. the vertices lying on the corresponding face) is

maximal.

As mentioned in Section 1, a polytope is 2-level if and only if it has a 0/1 slack matrix. For 0/1

matrices, checking for non-redundancy does not require linear programming: indeed, the

columns are always non-redundant as they can be seen as vertices of a hypercube, and for the

rows it again suffices to look at the set of zeros of each row. Hence, for simplicity, when dealing

with the slack matrix recognition problem we can always assume that our candidate slack

matrix is non-redundant. However, in the following we will sometimes assume that S contains

a certain row corresponding to a face of P , even if such row may be redundant. In particular

we observe that if r is a non-redundant row of S, the row~1− r represents a face of P hence it

can be added to S without changing the fact that it is a slack matrix of P . This is a consequence

of the 2-level property: indeed, the vertices that do not lie on facet corresponding to r are

contained in a single hyperplane, hence they form a face of P (not necessarily a facet), whose

slack is given exactly by~1− r .

4.2 k-sums of slack-matrices

Given two non-empty matrices S1 and S2, we define the operations of 1- and 2-sum of S1 and

S2, which generalizes to every k ≥ 1, and we show that these operations essentially preserve

the property of being a slack matrix for 0/1 matrices. For this reason we will only deal with 0/1

matrices, even though some of the definitions and results hold for more general settings, for

instance for matrices with real entries. The definition of k-sum is similar to the notion of glued

product appearing in [67, 77], but it has been defined independently from it. [67] contains

results analogous to Lemma 4.11 and Corollary 4.12, with the difference that the operation of

glued product is defined on polytopes, while our k-sum is defined on general matrices.

4.2.1 1-sums

Definition 4.3 (1-sum). The 1-sum of S1 ∈ {0,1}m1×n1 and S2 ∈ {0,1}m2×n2 is the matrix S whose

set of columns is obtained concatenating every column of S1 with every column of S2. More

precisely, for i = 1, . . . ,n1 ·n2, Si =
[

S j
1

Sk
2

]
, with i = ( j −1)n2 +k, and where M` denotes the `-th

column of matrix M . We write S = S1 ⊕1 S2 or simply S = S1 ⊕S2. Notice that S has m1 +m2

rows and n1 ·n2 columns.
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Example 4.4. Here follow some examples of 1-sums:

[
1 0

]
⊕

[
0
]
=

[
1 0

0 0

]
,

1 0

0 1

1 1

⊕
[

1 0 0

0 1 1

]
=


1 1 1 0 0 0

0 0 0 1 1 1

1 1 1 1 1 1

1 0 0 1 0 0

0 1 1 0 1 1

 .

For the purpose of recognizing slack matrices, permutations of columns and rows are not

relevant: the property of being a slack matrix is preserved when two rows or two columns are

swapped. Hence we call two matrices isomorphic if one can be obtained from the other by

permuting rows and columns. We say that a matrix S is a 1-sum if there are two matrices S1,S2

(each with strictly less rows than S) such that S is isomorphic to S1 ⊕1 S2 (we will often abuse

notation and simply write S = S1 ⊕S2). We call a matrix irreducible if it is not a 1-sum.

Remark 4.5. 1. Notice that S has a pair of identical columns if and only if the same is true

for either S1 or S2 or both. Similarly, S has a pair of identical, non-constant rows (i.e.

containing at least a 0 and a 1) if and only if at least one of S1,S2 does.

2. Let R,R1,R2 be the set of rows of S,S1,S2 respectively. Then there is a natural bijection

between R and R1 ∪R2 (where the union is disjoint): up to element permutation, each

row in R is obtained by concatenating a row in R1 with itself n2 times or a row in R2 with

itself n1 times. Hence, R1,R2 induce a partition of R, and we say that S is a 1-sum with

respect to R1,R2. In particular, if S is a 1-sum with respect to R1,R2, then S|R1
(restricted

to the rows R1) is made of n2 copies of S1 (possibly permuted), and similarly S|R2
is

made of n1 copies of S2. Notice that the choice of such S1,S2 is not necessarily unique,

unless S has no repeated columns: in this case S1 is obtained by keeping each column

of S|R1
exactly once, and similarly for S2.

3. The above remarks can be extended to the 1-sum of three or more matrices.

We will prove now that the 1-sum operation preserves the property of being a slack matrix. In

particular if Si is the slack matrix of some polytope Pi , i = 1,2, then S is the slack matrix of the

Cartesian product P1 ×P2 = {(x, y) ∈Rd1+d2 : x ∈ P1, y ∈ P2}, where di denotes the dimension

of polytope Pi for i = 1,2.

Lemma 4.6. Let S ∈ {0,1}m×n and let Si ∈ {0,1}mi×ni for i = 1,2 such that S = S1 ⊕S2. Then S is

a slack matrix of a polytope P if and only if there exist polytopes P1,P2 such that Si is a slack

matrix of Pi for i = 1,2 and P ∼= P1 ×P2.

Proof. From Theorem 4.1 and Lemma 4.2, it follows that the thesis is equivalent to proving

that

aff(col(S1 ⊕S2)) = aff(col(S1))×aff(col(S2))
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and

conv(col(S1 ⊕S2)) = conv(col(S1))×conv(col(S2)).

The same proof works for both statements, hence we only prove the first one. The inclusion

from left to right is easy. We prove ‘⊇’. Take p = (x, y) a point in conv(col(S1))×conv(col(S2)).

Then x is an affine combination
∑

i λi xi = x of the columns xi of S1, i = 1, . . . ,n1 and, similarly,

y is an affine combination
∑

j µ j y j = y of the columns y j of S2, j = 1, . . . ,n2. We deduce

that p = (x, y) =∑
i
∑

j λiµ j (xi , y j ), and
∑

i , j λiµ j =∑
i λi

∑
j µ j =∑

i λi = 1. Moreover, if µ j ≥
0,λi ≥ 0 for any i , j , then the multipliers are all non-negative, proving the second statement.

�

The following is an immediate consequence of Lemma 4.6 and Lemma 4.2.

Corollary 4.7. Let S,S1,S2 be slack matrices satisfying S = S1⊕S2.Then rk(S) = rk(S1)+rk(S2)−1.

4.2.2 2-sums and k-sums

In this section we define a more general operation of k-sum, for k ≥ 2. We first treat the

case k = 2. As before, let S1 ∈ {0,1}m1×n1 and S2 ∈ {0,1}m2×n2 , and let x1, y1 be rows of S1,S2,

respectively. We call x1, y1 special rows. For any matrix M and row r of M , we denote by M − r

the matrix obtained from M by removing row r . The row x1 determines a partition of the

columns of S1 −x1 according to its 0 and 1 entries: we construct the submatrices S0
1,S1

1 as

Sa
1 := ((S1 −x1)i j : x1 j = a) for a = 0,1. (4.1)

S0
1 S1

1

0 · · ·0 1 · · ·1


S1 =
← x1

Figure 4.1

Similarly, y1 induces a partition of S2−y1 into S0
2,S1

2. Here we assume that none of S0
1,S1

1,S0
2,S1

2

is empty, i.e. that each of x1, y1 contains at least a 0 and a 1.

We consider the matrix S1 with special row x1 as a pair (S1, x1), and matrix S2 with special row

y1 as (S2, y1).

Definition 4.8 (2-sum). With the previous notations, the 2-sum S of (S1, x1) and (S2, y1),
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denoted by S = (S1, x1)⊕2 (S2, y1), is:

S = (S1, x1)⊕2 (S2, y1) :=
(

S0
1 ⊕S0

2 S1
1 ⊕S1

2

0 · · ·0 1 · · ·1

)

Similarly as before, we say that S is a 2-sum if there exist matrices S1,S2 (each with less rows

and columns than S) and rows x1 of S1, y1 of S2, such that S is isomorphic to (S1, x1)⊕2 (S2, y1).

Again, we will abuse notation and write S = (S1, x1)⊕2 (S2, y1).

We will now extend Lemma 4.6 to the 2-sum operation. However, the 2-sum does not behave

as well as the 1-sum in terms of slack matrix, as the following example shows. Assume S1,S2

are non-redundant slack matrices such that S1 has two opposite rows x1, x2 = 1− x1, and

similarly S2 has two opposite rows y1, y2 = 1− y1. Let S = (S1, x1)⊕2 (S2, y1), in the next lemma

we will prove that S is a slack matrix as well. It is not hard to see that S has two identical

rows (in correspondence of x2, y2), hence we can delete one of them and obtain S′, which

is obviously still a slack matrix, and satisfies S′ = (S1, x1)⊕2 (S′
2, y1) where S′

2 = S2 − y2. But

now S′
2 does not need to be a slack matrix anymore. This could in principle cause problems

since when decomposing a slack matrix into a 2-sum we might obtain with factors that are

not slack matrices. However we will see that this example is the only exception, one for which

there is a simple fix: one just adds to each factor the row which is opposite to the special row.

As observed in Section 4.1.1, such opposite rows can be safely added while preserving the

property of being a slack matrix (and in practice, they need to be added only if they are not

dominated by some other row).

The proof of the following lemma is omitted as it is a special case of Lemma 4.11.

Lemma 4.9. Let S ∈ {0,1}m×n and let Si ∈ {0,1}mi×ni for i = 1,2 such that S = (S1, x1)⊕2 (S2, y1)

for some row x1 of S1, y1 of S2. Then the following hold:

1. If S1,S2 are slack matrices, then S is a slack matrix.

2. If S is a slack matrix, let S′
1 = S1 + (1−x1) (i.e. S1 with one additional row that is opposite

to x1), and similarly let S′
2 = S2 + (1− y2) . Then S′

1,S′
2 are slack matrices.

We now define the general operation of k-sum, k ≥ 2. Similarly as before, we consider two

0/1 matrices S1,S2 each with k −1 special rows, x1, . . . , xk−1, y1, . . . , yk−1 respectively, such that

no column of S1 has more than one entry corresponding to an xi equal to 1, and similarly

for S2. For (a1, . . . , ak−1) ∈ {(0, . . . ,0), (1, . . . ,0), . . . , (0, . . . ,1)}, S1 − {x1, . . . , xk−1} is partitioned into

submatrices Sa1...ak−1
1 containing all the columns of S1 whose entries in correspondence of the

special rows are a1, . . . , ak−1, and similarly for Sa1...ak−1
2 . We assume again that all submatrices

Sa1...ak−1
1 , Sa1...ak−1

2 are non-empty.

Definition 4.10 (k-sum). With the previous notations, the k-sum S of the matrices S1 with spe-

cial rows (x1, . . . , xk−1) and S2 with special rows (y1, . . . , yk−1), denoted by (S1, (x1, . . . , xk−1))⊕k
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(S2, (y1, . . . , yk−1)), is defined to be:

S = (S1, (x1, . . . , xk−1))⊕k (S2, (y1, . . . , yk−1)) :=


S0...0 S0...1 · · · S1...0

0 · · ·0 0 · · ·0 · · · 1 · · ·1
...

...
...

...

0 · · ·0 1 · · ·1 · · · 0 · · ·0

 (4.2)

where, for every (a1, . . . , ak−1) ∈ {(0, . . . ,0), (1, . . . ,0), . . . , (0, . . . ,1)}, Sa1...ak−1 := Sa1...ak−1
1 ⊕Sa1...ak−1

2 .

Similarly as before, we say that S is a k-sum if there exist matrices S1,S2 (each with less

rows and columns than S) and rows x1, . . . , xk of S1, y1, . . . , yk of S2, such that S is isomor-

phic to (S1, (x1, . . . , xk−1))⊕k (S2, (y1, . . . , yk−1)). Again, we will abuse notation and write S =
(S1, x1, . . . , xk−1)⊕ (S2, y1, . . . , yk−1). The following lemma is a generalization of Lemma 4.9.

Lemma 4.11. Let S ∈ {0,1}m×n and let Si ∈ {0,1}mi×ni for i = 1,2 such that S = (S1, x1, . . . , xk−1)⊕k

(S2, y1, . . . , yk−1) for some special rows (x1, . . . , xk−1) of S1, and (y1, . . . , yk−1) of S2.

1. If S1,S2 are slack matrices, then S is a slack matrix.

2. If S is a slack matrix, let S′
1 = S1 + (1− x1 −·· ·− xk−1), and construct S′

2 similarly. Then

S′
1,S′

2 are slack matrices.

Proof. 1. Let Pi := conv(col(Si )) ⊆ Rmi for i = 1,2. Without loss of generality, x1, . . . , xk−1

can be assumed to be the first k − 1 rows of S1, and similarly for y1, . . . , yk−1 and S2.

Hence, for a point x ∈Rm1 , we overload notation and denote by xi the i -th coordinate of

x, and similarly for y ∈Rm2 .

By Lemma 4.6, we have that S is a submatrix of a slack matrix of P1 ×P2 ∩H , where H

is the hyperplane defined by the equations x1 = y1, . . . , xk−1 = yk−1. Proving that S is a

slack matrix is equivalent to showing that intersecting P1 ×P2 with H does not create

any new vertex, i.e. that P1 ×P2 ∩H ⊆ conv(col(S)).

Consider a point p = (x∗, y∗) ∈ P1×P2∩H ⊆Rm1×Rm2 , for some x∗ ∈ P1 and y∗ ∈ P2. For

a density argument, it suffices to show that (x∗, y∗) is in conv(col(S)) when (x∗, y∗) has

all rational coordinates. Then x∗ is a convex combination of the vertices of P1 and y∗ is

a convex combination of the vertices of P2 (which are columns of S1,S2 respectively),

where the coefficients are all rational:

x∗ =
n1∑

i=1
λi vi and y∗ =

n2∑
j=1

µ j w j with
∑

i
λi =

∑
j
µ j = 1, λi ,µ j ∈Q+ .

Then there exists a positive integer K such that Kλi ∈N and Kµ j ∈N for every i ∈ [n1]

and every j ∈ [n2]. Moreover, K = K
∑

i λi = K
∑

j µ j .

Let us partition the set of vertices of P1 that occur in the convex combination into k

subsets, according to the entries corresponding to the special rows (x1, . . . , xk−1). For
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`= 1, . . . ,k −1, let V `
1 be the set of vi ’s with `-th coordinate equal to 1, and let V 0

1 be the

set of the remaining vi ’s (i.e. with the first k −1 coordinates all equal to 0, since each

vi has at most one of the first k −1 coordinates equal to 1). The sets V 0
2 , . . . ,V k−1

2 are

defined similarly. For x∗, we have:

x∗ = ∑
vi∈V 0

1

λi vi +·· ·+ ∑
vi∈V k−1

1

λi vi .

We split in the same way the identity K = K
∑

i λi . Thus K = α0 + ·· · +αk−1, where

α` := ∑
vi∈V `

1
(Kλi ) for ` = 0, . . . ,k −1. Applying the same reasoning to y∗, we get that

K =β0 +·· ·+βk−1, where β` :=∑
w j∈V `

2
(Kµ j ) for `= 0, . . . ,k −1.

Since the vi ’s and w j ’s are 0/1 vectors, we have that K x∗
`
= α` and K y∗

`
= β` for ` =

1, . . . ,k −1. Exploiting the fact that the first k −1 coordinates of x∗, y∗ are equal, we have

that α` =β` for `= 1, . . . ,k −1. These identities jointly imply that α0 =β0.

Fix ` ∈ {0, . . . ,k −1}. The coefficients α`, β` coincide with the number of vectors vi in V `
1

and w j in V `
2 when counted with their multiplicity Kλi in the identity of K x∗ = K

∑
i λi vi

and Kµ j in K y∗ = K
∑

j µ j w j respectively. Consider then the multiset V
`
1 containing

each vector vi with multiplicity Kλi and, similarly V
`
2 containing each vector w j with

multiplicity Kµ j . As |V `
1| = |V `

2| = α`, there exists a bijection Φ` from the first to the

latter. Let Φ` be the truncation of Φ` excluding coordinates y1, . . . , yk−1. Hence, the

vectors (vi ,Φ`(vi )) are columns of S for every vi ∈V
`
1 .

We can now express p = (x∗, y∗) as:

(x∗, y∗) = 1

K

( ∑
vi∈V

0
1

(vi ,Φ0(vi ))+·· ·+ ∑
vi∈V

k−1
1

(vi ,Φk−1(vi ))

)

This shows that (x∗, y∗) lies in the convex hull of the columns of S.

2. Let S = (S1, x1, . . . , xk−1)⊕k (S2, y1, . . . , yk−1) be a 0/1 slack matrix. We show that S′
1 = S1+

(1−x1−·· ·−xk−1) is a slack matrix, the argument for S′
2 is exactly the same. By Theorem

4.1, we have aff(col(S))∩Rm+ = conv(col(S)), and we will show that the same holds for

S′
1. We use a similar notation than in the first part: we assume that x1, . . . , xk−1,1−

x1 −·· ·− xk−1 are the first k rows of S′
1, and for ` = 1, . . . ,k we denote by V `

1 the set of

columns of S′
1 with `-th coordinate equal to 1 (notice that we do not use V 0

1 anymore for

simplicity of notation). Let x∗ ∈ aff(col(S′
1))∩Rm1+ , one has x∗ =∑

i λi vi =∑
vi∈V 1

1
λi vi +

·· · +∑
vi∈V k

1
λi vi , with

∑
i λi = 1. In particular, x∗

`
= ∑

vi∈V `
1
λi ≥ 0 for ` = 1, . . . ,k with

x∗
1 +·· ·+ x∗

k = 1. We now extend x∗ to a point x̃ ∈ aff(col(S)) as follows: for `= 1, . . . ,k,

fix a column u` of S2 with the `-th coordinate equal to 1 if ` < k, and with the first

k −1 coordinates all equal to 0 if `= k (such columns exist since by assumption every

S0...0
2 , . . . ,S1...0

2 is non-empty). Then map each vi ∈V `
1 to the column of S consisting of

vi (without its k-th coordinate) followed by u` (without the coordinates corresponding

to y1, . . . , yk−1) for ` = 1, . . . ,k. We denote such column by wi , for 1 = 1, . . . ,n1, and
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let x̃ =∑
i λi wi . Now, we claim that x̃ ∈Rm+ : indeed, by construction of the wi ’s, every

component of x̃ is equal to a component of x∗, or to a sum of a (possibly empty) subset of

{x∗
1 , . . . , x∗

k }, according to the corresponding component of the u`’s. Hence we have that

x̃ ∈ aff(col(S))∩Rm+ = conv(col(S)). We claim that this implies that x∗ ∈ conv(col(S′
1)):

indeed, if x̃ = ∑
i µi wi , with µi ≥ 0 for i = 1, . . . ,n1, and

∑
i µi = 1 then it follows that

x∗ = ∑
i µi vi . This is trivial except for the k-th coordinate: but the latter is equal to∑

vi∈V k
1
µi = 1−∑

vi∈V 1
1
µi +·· ·+∑

vi∈V k−1
1

µi = 1−x∗
1 −·· ·−x∗

k−1 = x∗
k . Hence we conclude

that S′
1 is a slack matrix.

�

Corollary 4.12. Let S,S1,S2 be slack matrices of polytopes P,P1,P2 respectively, satisfying the

hypothesis of Lemma 4.11. Then xc(P ) ≤ xc(P1)+xc(P2).

Proof. This directly follows from the fact that P is linearly isomorphic to P1 ×P2 ∩H , where

H is the hyperplane defined in the proof of Lemma 4.11. Indeed it is an easy observation

that if Qi is an extension of Pi , i.e. if Pi = {x(i ) : ∃ y (i ) :
(
x(i ), y (i )

) ∈ Qi } for i = 1,2, then

P1 ×P2 = {
(
x(1), x(2)

)
: ∃ (

x(i ), y (i )
) ∈Qi for i = 1,2}. �

This corollary suggests that decomposition via k-sum can be a useful tool for proving upper

bounds on the extension complexity of 2-level polytopes.

We conclude by arguing that, in Lemma 4.11, if S1 is a slack matrix of P1, then the row r =
1− x1 − ·· ·− xk−1 corresponds to a face of P1 (and similarly for S2). Hence, in practice, we

only need to add this row if it is not dominated by any of the rows of S1. We have that r is a

linear combination of the rows of S1 and is non-negative, hence by Theorem 4.1 it is a conic

combination of the rows of S1. But this implies that r corresponds to a face of P1: for a proof,

let r =∑
i λi xi , where λi ≥ 0 and i ranges over all the row indices of S1, and let ai z = bi be a

hyperplane defining the facet of P1 corresponding to xi for every i . Then r corresponds to the

face defined by
∑

i λi ai z =∑
i λi bi . As a last remark, notice that the identity matrix Ik acts as

a neutral element for the k-sum of slack matrices: indeed, we have S1 ⊕k Ik = S1 + r , and we

just argued that S1 and S1 + r are essentially the same slack matrix. However, we defined S to

be a k-sum if the two factors have strictly less rows and columns than S, thus avoiding this

technical issue. In particular it is not hard to see that if both S1,S2 are not the identity matrix

(which is the slack matrix of a simplex), then their k-sum has rank strictly greater than the rank

of S1,S2, hence the same holds for the dimension of the corresponding polytopes (see Lemma

4.2). The following observation justifies the idea of decomposing slack matrices via k-sum.

Observation 4.13. Let k ≥ 2, and let S ∈ {0,1}m×n be a k-sum with factors S1,S2, where

S,S1,S2 are non-redundant slack matrices of polytopes P,P1,P2 respectively. Then rk(S) >
max{k, rk(S1), rk(S2)}. In particular, dim(P ) > max{k −1,dim(P1),dim(P2)}.
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Proof. Let S = (S1, (x1, . . . , xk−1))⊕k (S2, (y1, . . . , yk−1)) for some special rows x1, . . . , xk−1, y1, . . . ,

yk−1, such that none of S1,S2 is (isomorphic to) the identity matrix Ik . Let P,P1,P2 be the poly-

topes with slack matrices S,S1,S2 respectively. As a first remark, we have that rk(S1), rk(S2) ≥ k:

indeed, S1 is an upper triangular block matrix with k blocks, the first k −1 consisting of a row

of 1s, the last one being S0...0
1 , which has rank at least 1 (since S1 does not have 0 columns),

and the same holds for S2.

We now show that rk(S) > rk(S1), the proof for S2 being the same. This will complete the proof.

First, notice that rk(S) ≥ rk(S1) since S1 is a submatrix of S. Now, assume by contradiction

that equality holds, hence there are t = rk(S1) = rk(S) columns of S1 that form a basis for the

column space of S1, and t corresponding columns of S that form a basis B for the column

space of S. But then every column of S can be written in a unique way as linear combination

of columns in B , implying that no two columns of S are identical when restricted to rows of

S1, but different otherwise. Hence Sa1...ak−1
2 consists of one column only for any (a1, . . . , ak−1) ∈

{(0, . . . ,0), (1, . . . ,0), . . . , (0, . . . ,1)}, in particular S2 has exactly k columns. But as rk(S2) ≥ k, we

conclude by Lemma 4.2 that P2 has dimension k −1 and k vertices, i.e. P2 is a simplex and

S2 = Ik , a contradiction. �

4.3 Slack matrices of 2-level stable set polytopes

Stable set polytopes of perfect graphs are a prominent example of 2-level polytopes and it is

natural to ask for an interpretation of the k-sum operation in this case. In this section we give a

simple answer to this question, as well as describing an algorithm to recognize slack matrices

of stable set polytopes in polynomial time. We recall (see Chapter 2, Section 2.3.1) that for

a perfect graph G(V ,E), STAB(G) = {x ∈RV+ : x(C ) ≤ 1 for all maximal cliques C of G}, and this

description is non-redundant. Hence a 0/1, non-redundant slack matrix of STAB(G) will have

a column for each stable set of G and a row for each non-negativity inequality and for each

maximal clique of G (we call such rows and inequalities clique rows and clique inequalities). In

this section, we give a simple characterization of slack matrices of 2-level stable set polytopes

that are k-sums. The characterization is based on the idea of composing two graphs G1,G2

by identifying the vertices of a clique of G1 and a clique of G2, to obtain a graph G whose

stable sets have a simple description in terms of the stable sets of G1,G2. This goes back to

[18] (see Theorem 4.1) and was studied in a more general setting in [22]. We say that a graph

G(V ,E) has a clique cut-set K if V can be partitioned in V1,V2,K such that V1,V2 6= ;, K is a

clique, and there is no edge between V1,V2. For simplicity, we allow K to be empty: this is

equivalent to G being disconnected, in particular G is the disjoint union of G1,G2 with vertex

sets V1,V2 respectively. It is easy to see that in this case STAB(G) = STAB(G1)×STAB(G2), hence

if S,Si denote the slack matrices of STAB(G),STAB(Gi ) for i = 1,2, we have S = S1 ⊕ S2. In

general, if G has a clique cut-set of size k−1, and G1,G2 are the restriction of G to V1∪K ,V2∪K

respectively, it is not hard to see that S is the k-sum of S1,S2, with special rows corresponding

to the non-negativity inequalities xv ≥ 0, for V ∈ K . We now show that some kind of converse
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holds. We will assume, without loss of generality, that our slack matrices do not have constant

(all zeros or all ones) rows.

Theorem 4.14. Let G(V ,E) be a perfect graph and S be a 0/1 slack matrix of STAB(G) with

no constant rows, and let k ≥ 1. Then S is a k-sum with special rows corresponding to non-

negativity inequalities if and only if G has a clique cut-set of size k −1.

Proof. One direction has already been sketched above, so we focus on the other one. Assume

that S = (S1, x1, . . . , xk−1)⊕k (S2, y1, . . . , yk−1) for some matrices S1,S2 and (if k > 1) special rows

(x1, . . . , xk−1) of S1, and (y1, . . . , yk−1) of S2. We will prove that G has a clique cut-set of size k−1

by induction on k.

• For k = 1, we have that S = S1 ⊕S2 and the non-negativity inequalities zv ≥ 0 for v ∈V

belong either to S1 or to S2, inducing a partition V1,V2 of V . As the slack of all the clique

inequalities is determined by the slack of the non-negativity inequalities, it is easy to see

that if one of V1, V2 was empty we would have that S1 or S2 consists of a single column,

but then S has a constant row, a contradiction. Hence we have that I ⊂V is a stable set

of G if and only if I = I1 ∪ I2, where Ii is a stable set in Vi for i = 1,2. This implies that

there is no edge between V1,V2, and we are done.

• Let k ≥ 2. We have that the special rows correspond to non-negativity inequalities

zvi ≥ 0, for i = 1, . . . ,k −1, and since no column contains two 1’s in correspondence of

two special rows, the vi ’s form a clique K . Fix any special row, say zv1 ≥ 0: it is easy to see

that the submatrix S′ induced by the zeros of this row is the slack matrix of STAB(G −v1).

But S′ (after possibly removing a constant row) is a k −1-sum with respect to the rows

zvi ≥ 0 for i = 2, . . . ,k −2. Hence, by induction G − v has {v2, . . . , vk−1} as a clique cut-set.

But then {v1, . . . , vk−1} form a clique cut-set for G , and we are done.

�

Theorem 4.14 could be used to decompose the slack matrix of STAB(G) into slack matrices of

stable set polytopes of smaller graphs, for instance with the purpose of recognition, provided

that G has a clique cut-set. However, we now describe a polynomial algorithm to recognize

slack matrices of stable set polytopes of perfect graphs without using the notion of k-sums.

First, as argued in Section 4.1.1, we can restrict ourselves to the case of non-redundant slack

matrices. Given S ∈ {0,1}m×n , let the rank of S be r , hence if S is a slack slack matrix of a

polytope P the dimension of P is d = r −1 thanks to Lemma 4.2. We know that if S is the

slack matrix of STAB(G) (we refer to this as the YES case), where G has d vertices, then there

is a column of S (corresponding to the empty set) with exactly d zeros. Hence, if no such

column exists, we output NO. Otherwise, for each such column c, we assume that the d rows

that have zeros in position c correspond to the non-negativity inequalities. This allows us to

reconstruct a graph G by connecting two vertices if they do not form a stable set, i.e. if the two
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corresponding rows do not have a 1 in the same position. Now, the columns of S give us a list

of stable sets of G , and by identifying the singletons among them we can easily obtain a list of

maximal cliques of G from the rows of S which are not non-negativity rows. Provided that the

entries of S do not give rise to any inconsistency while computing such lists, we ne need to

check that these lists are complete. Now, it is well known that the maximal cliques of a graph

(hence the independent sets as well) can be enumerated in total polynomial time (i.e., in time

polynomial in the size of the output), for instance using the Bron–Kerbosch algorithm ([12]).

Hence we can efficiently check whether the lists are complete in time polynomial in their size,

i.e. polynomial in the size of S. If all these checks are successful, then S is the slack matrix of

STAB(G) and we output YES. In the worst case, we need to iterate the above procedure over all

columns of S (with exactly d zeros) and, if the check fails for each of them, we output NO. We

proved the following:

Theorem 4.15. Let S ∈ {0,1}m×n . Then there is an algorithm that runs in polynomial time in

m,n and determines whether S is the slack matrix of STAB(G), for some graph G.

4.4 Recognition algorithms

In this section, we study the problem of recognizing k-sums: given a 0/1 matrix S and an

integer k ≥ 1, we want to determine whether S is a k-sum, and find the factors S1,S2 (and

the special rows, if k > 1) such that S = (S1, x1, . . . , xk−1)⊕k (S2, y1, . . . , yk−1). Since we allow the

rows and columns of S to be permuted in any way, the problem is non-trivial. In the following

we will describe some algorithms to solve this problem. Our purpose is to use such algorithms

to recognize slack matrices: given S a candidate slack matrix, we would like to decompose S as

a k-sum of smaller matrices, which are all slack matrices (or can be turned into slack matrices

by adding a row) if and only if S is, thanks to Lemma 4.11.

The starting point of our approach is the following observation: if a matrix S is a 1-sum S1 ⊕S2

with respect to a partition R1,R2 of its row set, then a column of the form (a,b), where a,b are

vectors corresponding to R1,R2 respectively, is a column of S if and only if a is a column of S|R1

and b is a column of S|R2
. Moreover, the number of occurrences of (a,b) depends exclusively

on the number of occurrences of a in S|R1
and of b in S|R2

, or equivalently in S1, S2. Intuitively,

given uniform probability distributions on the columns of S, the probability of picking (a,b)

in S is just the product of the probabilities of picking a in S|R1
and b in S|R2

, as the latter are

independent events. We will formalize and exploit this intuition in the next section, obtaining

an algorithm for recognizing 1-sums. We will then extend this algorithm in order to recognize

k-sums.

We remark that, even though we focus on 0/1 matrices, the results of this section can be easily

extended to matrices with real entries or entries in any set.
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4.4.1 Recognizing 1-sums via submodular function minimization

We recall some notions from information theory. We refer to [23] for a more complete exposi-

tion. Let A be a discrete random variable. For simplicity we overload notation and write a ∈ A

for a in the range of A, and Pr(a) = Pr(A = a).

Definition 4.16. Let A,B two discrete random variables.

1. The entropy of A is: H(A) =−∑
a∈A Pr(a) logPr(a).

2. The joint entropy of A,B is: H(A,B) =−∑
a∈A,b∈B Pr(a,b) logPr(a,b).

3. The conditional entropy of A given B is: H(A|B) =∑
b∈B Pr(b)H(A|B = b).

4. The mutual information of A,B is:

I (A,B) = ∑
a∈A,b∈B

Pr(a,b) log
Pr(a,b)

Pr(a) ·Pr(b)
.

We will use the following facts, whose proof can be found in [23]:

Proposition 4.17. Let A,B two discrete random variables. Then

1. H(A,B) = H(A)+H(B |A).

2. I (A,B) = H(A)−H(A|B) = H(B)−H(B |A).

3. H(A|B) ≤ H(A), with equality if and only if A,B are independent.

4. I (A,B) ≥ 0, with equality if and only if A,B are independent.

Joint entropy extends the notion of entropy to pairs, or more generally to sets, of random

variables: indeed, a set of random variables {X1, . . . , Xm} can be seen as a random variable

X whose distribution is the joint distribution of the Xi ’s. This can be applied to mutual

information in a similar way, thanks to Proposition 4.17, part 2. We will now prove that entropy

and mutual information, when considered as functions of sets of random variables, are

submodular. Recall that a function g : 2Ω→R, whereΩ is a finite set, is said to be submodular

if for every X ,Y ⊆Ω, g (X )+ g (Y )> g (X ∪Y )+ g (X ∩Y ) . We are going to use the following

alternative definition, which can be seen to be equivalent: g is submodular if and only if for

every X ⊆ Y ⊆Ω, and for every z ∉ Y ,

g (X ∪ {z})− g (X )> g (Y ∪ {z})− g (Y ) . (4.3)

In our context, Ω is a finite set of discrete random variables. For simplicity of notation, in

the following we use capital letters to denote sets of random variables, X ⊆Ω and lower case

letters to denote individual random variables z ∈Ω.
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Proposition 4.18. The entropy H : 2Ω→R+ is submodular.

Proof. For every X ⊆ Y ⊆Ω and z ∉ Y , we claim:

H(X , z)−H(X )>H(Y , z)−H(Y ) .

Using Proposition 4.17, part 1, the left hand side is equal to H(z | X ) and the right hand side

to H(z | Y ). At this point notice that conditioning cannot increase entropy (Proposition 4.17,

part 3), thus:

H(z | Y ) = H(z | X ∪ (Y \ X ))6H(z | X ) .

The claim follows. �

Submodularity of entropy yields a similar property for mutual information.

Proposition 4.19. The mutual information I (X ;Ω\ X ) is submodular as a function of X ⊆Ω.

Proof. Fix X ⊆ Y ⊆Ω, z 6∈ Y . From Proposition 4.17, parts 1,2 it follows that

I (X ;Ω\ X ) = H(X )+H(Ω\ X )−H(Ω).

Hence, we have that

AX := I (X ∪ {z};Ω\ (X ∪ {z}))− I (X ;Ω\ X )

= H(X ∪ {z})+H(Ω\ (X ∪ {z}))−H(X )−H(Ω\ X )

= H(X ∪ {z})−H(X )+H(Ω\ (X ∪ {z}))−H(Ω\ X ) .

(4.4)

We define AY analogously, thus it satisfies similar chain of identities as (4.4). By submodularity

of entropy applied to X ⊆ Y and toΩ\ (Y ∪ {z}) ⊆Ω\ (X ∪ {z}), we conclude that AX > AY , as

desired. �

Let S ∈ {0,1}m×n , and X ⊆ [m] be a non-empty subset of row indices of S, and X = [m] \ X .

Consider the random variable C , that has uniform distribution over col(S), i.e. it takes value

c∗ with probability equal µ(c∗)
n , where µ(c∗) is the number of occurrences of the column c∗ in

col(S). Let CX be the restriction of C to the indices of X . Now, let f : 2[m] →R≥0 be defined as

f (X ) = I (CX ,CX ) . (4.5)

We remark that the definition of f depends on S, which we consider fixed throughout the

section. Then f is non-negative and symmetric ( f (X ) = f (X )). Moreover, by identifying

Ω= {C{i }, i ∈ [m]} with [m], we have that f (X ) = I (X ,Ω\ X ) is submodular thanks to Proposi-

tion 4.19.
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The next lemma shows that we can determine whether S is a 1-sum by minimizing f .

Lemma 4.20. Let S ∈ {0,1}m×n , and ; 6= X ⊆ [m] be a proper subset of row indices of S. Then S

is a 1-sum with respect to X , X if and only if f (X ) = 0.

Proof. Recall that f (X ) = 0 if and only if CX and CX are independent random variables (Propo-

sition 4.17, part 4). First, we prove ‘⇒’. Let S be a 1-sum with respect to X , X , with correspond-

ing decomposition S = S1 ⊕S2, where Si ∈ {0,1}mi×ni . Up to column permutation, we have

that S|X consists of S1, repeated n2 times, and SX consists of S2, repeated n1 times. Hence for

any column c = (cX ,cX ) of S, we have

µ(c) =µ1(cX )µ2(cX ) = µ(cX )

n2

µ(cX )

n1
,

where µi denotes the multiplicity of a column in Si , i = 1,2. Hence

Pr(C = c) = Pr(CX = cX ,CX = cX ) = µ(cX )

n2

µ(cX )

n1

1

n
= Pr(CX = cX )Pr(CX = cX ),

where we used n = n1n2. This proves that CX and CX are independent.

We now prove ‘⇐’. Let a1, . . . , ah denote the different columns of S|X , and b1, . . . ,bk denote the

different columns of S|X . Since CX and CX are independent, we have that, for any column

c = (ai ,b j ) of S,

µ(ai ,b j ) = n ·Pr(CX = ai ,CX = b j ) = n ·Pr(CX = ai )Pr(CX = b j ) = µX (ai )µX (b j )

n
,

where µX (c),µX (c) denote the multiplicity of a column c of S|X ,S|X respectively. Hence, if M

denotes the matrix such that Mi , j = µ(ai ,b j ), we have that M is a matrix with nonnegative

integer entries that has a rank 1 factorization of the form uvᵀ, where ui = µX (ai )/n, v j =
µX (b j ), for i = 1, . . . ,h, j = 1, . . . ,k. Now, it is easy to see that one can turn this factorization

into an integer one: let u1 = p1/q1, where p1, q1 are coprimes, then q1 must divide v j for any j ,

since u1v j is integer. Then the factorization q1u · 1
q1

vᵀ = u′(v ′)T is such that v ′ is integer and u′

has at least one more integer entry than u. Iterating, we obtain that M = u vᵀ where u, v have

nonnegative integer entries. Now, let S1 be the matrix consisting of the column ai repeated ui

times, for i = 1, . . . ,h, and construct S2 from v in an analogous way. Then it is immediate to

see that S = S1 ⊕S2 and in particular S is a 1-sum with respect to the row partition X , X , which

concludes the proof. �

Notice that the previous proof also gives a way to efficiently reconstruct S1, S2 once we identi-

fied X such that f (X ) = 0. In particular, if the columns of S are all distinct, then reconstructing

S1,S2 is immediate: S1 consists of all the distinct columns of S|X , each taken once, and S2 is ob-

tained analogously from SX . The last ingredient we need is that every (symmetric) submodular

function can be minimized in polynomial time:
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Theorem 4.21. [83] Let f : 2A → R be a symmetric submodular function. Then there is an

algorithm that outputs a set X such that X 6= ;, A and f (X ) is minimum, using O(n3) calls to

an oracle for f and O(n3) other basic operations, where n = |A|.

As a consequence, we obtain the following:

Theorem 4.22. Let S ∈ {0,1}m×n . There is an algorithm that is polynomial in n,m and deter-

mines whether S is a 1-sum and, in case it is, outputs two matrices S1,S2 such that S = S1 ⊕S2.

Proof. It is clear that f (X ) can be computed in polynomial time for any X . It suffices then

to run Queyranne’s algorithm to find X minimizing f . If f (X ) > 0, then S is not a 1-sum.

Otherwise, f (X ) = 0 and S1, S2 can be reconstructed as described in the proof of Lemma 4.20.

�

We conclude the section with a decomposition result that will be useful for later. In light of

Lemma 4.6, this result generalizes the fact that a polytope can be uniquely decomposed as

cartesian product of "irreducible" polytopes (see [39] for a proof, in the context of abstract

polytopes).

Lemma 4.23. Let S ∈ {0,1}m×n be a 1-sum. Then there exists a partition {X1, . . . , X t } of [m] such

that:

1. S is a 1-sum with respect to Xi , Xi for i = 1, . . . , t ;

2. for any i and any X proper subset of Xi , S is not a 1-sum with respect to X , X , i.e. the Xi ’s

are “minimal”;

3. the partition X1, . . . , X t is unique up to permuting the labels.

In particular, if S has all distinct columns, then there are matrices S1, . . . ,St such that S =
S1 ⊕ ·· · ⊕ St , each Si is irreducible, and the choice of the Si ’s is unique up to renaming and

permuting columns.

Proof. We first recall the following well known property of submodular functions, which

follows immediately from the definition: if a submodular function is minimized by X1, X2,

then it is also minimized by X1∩X2 (and X1∪X2). This means that the family of solutions of f

of value 0 (which is non-empty thanks to Lemma 4.20, hence it has at least two elements for

the symmetry of f ) is closed under intersection: let X1, . . . , X t be the minimal (non-empty) sets

of such family. Clearly, X1, . . . , X t are all disjoint. Moreover, since f is symmetric, the union of

the Xi ’s is [m], hence X1, . . . , X t forms a partition of [m] satisfying (i) (due to Lemma 4.20) and

(ii) due to their minimality.
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Moreover it easily follows that X1, . . . , X t are unique, as we now show: let X ′
1, . . . , X ′

t ′ another

partition of [m] satisfying properties (i),(ii). If the two partitions are actually different, and not

a renaming of each other, there exist Xi , X ′
j with Xi 6= X ′

j and Xi ∩X ′
j 6= ;. But then Xi ∩X ′

j is

an optimal solution which is a proper subset of (at least one of) Xi , X ′
j , a contradiction.

To conclude, assume that S has all distinct columns. Then as argued above each Si is obtained

by picking each distinct column of S|Xi
exactly once, and it is thus unique up to permutations,

once Xi is fixed. Each Si is irreducible thanks to the minimality of Xi and to Lemma 4.20. The

fact that the Xi ’s are unique up to renaming concludes the proof. �

Remark 4.24. One can strengthen Lemma 4.23 in the following sense: let us call a matrix

repetitive if it is formed by horizontally concatenating the same matrix multiple times, i.e. it is

of the form S =
[

S′ . . . S′
]

for some S′, or if it is isomorphic to a matrix of this form. Then

repetitive matrices are the only ones that can admit multiple 1-sum factorizations, as in the

following example: [
0 0

1 1

]
=

[
0 0

]
⊕

[
1
]
=

[
0
]
⊕

[
1 1

]
.

Formally, if S is a 1-sum and it is not repetitive, it has a factorization S = S1 ⊕ ·· · ⊕ St in

irreducible matrices that is unique up to renaming and permuting columns. We actually prove

something stronger: assume that S = S1 ⊕S2 = S′
1 ⊕S′

2 where both 1-sums are with respect to

the same partition R1,R2, and S1 6= S′
1. Then S is repetitive. To see this, consider the matrix M

defined in the proof of Lemma 4.20: M has a row for each column of S|R1
, a column for each

column of S|R2
, and the entries are given by the multiplicity of each column in S. Then there

are vectors u, v,u′, v ′ with positive integers as entries and such that M = uvᵀ = u′(v ′)T and

u 6= u′, v 6= v ′. But then we must have (without loss of generality) u = λu′, v = 1
λv ′ for some

integer λ> 1. This implies that all entries of M are divisible by λ, which implies in particular

that S is repetitive.

4.4.2 Extension to k-sums

We now extend the previous results to obtain a polynomial algorithm to recognize k-sums,

for constant k > 1. Recall that, if a 0/1 matrix S is a k-sum, then it has k − 1 special rows

that divide S in submatrices S0...0,S0...1, . . . ,S1...0, all of which are 1-sums with respect to the

same partition. Hence, our algorithm starts by guessing the k −1 special rows, and obtaining

the corresponding submatrices S0...0,S0...1, . . . ,S1...0. Let f0, f1, . . . , fk−1 denote the functions

f as defined in (4.5) with respect to the matrices S0...0,S0...1, . . . ,S1...0 respectively, and let

f̃ =∑k−1
i=0 fi . Notice that f̃ is submodular, and is zero if and only if each fi is. Let X be a proper

subset of the non-special rows of S (which are the rows of any of S0...0,S0...1, . . . ,S1...0). It is an

easy consequence of Lemma 4.20 that S0...0,S0...1, . . . ,S1...0 are 1-sums with respect to X if and

only if f̃ (X ) = 0. Then S is a k-sum with respect to the chosen special rows if and only if the

minimum of f̃ is zero. Alternatively, one could first repeatedly decompose each Sa1...ak−1 and
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obtain a minimal partition of its row set, as described in Lemma 4.23, and then check whether

these k partitions are refinements of a single partition X , X̄ of the row set. This is a simple

combinatorial problem that can be solved efficiently.

Once a feasible partition is found, S1,S2 can be reconstructed by first reconstructing all

Sa1...ak−1
1 ’s, Sa1...ak−1

2 ’s and then concatenating them and adding the special rows. We obtained

the following:

Theorem 4.25. Let S ∈ {0,1}m×n , and k ∈Z be a positive constant. There is an algorithm that is

polynomial in n,m and determines whether S is a k-sum and, in case it is, outputs two matrices

S1,S2 and special rows x1, . . . , xk−1 of S1, y1, . . . , yk−1 of S2, such that S = (S1, x1, . . . , xk−1)⊕k

(S2, y1, . . . , yk−1).

In order to apply Theorem 4.25 to decompose slack matrices, we need to deal with a last issue:

in the algorithm, it is fundamental to guess the special rows that partition the column set

in 1-sums. However, in principle there might be a slack matrix that is obtained as k-sum of

other slack matrices, but where one of the special rows is redundant (i.e. it corresponds to a

face, and not a facet, of the polytope). Then deleting such row still gives a slack matrix, but

we cannot recognize such matrix as k-sum any more using our algorithm. However, the next

lemma ensures that this does not happen, as long as we assume that the special rows are not

redundant in the factors of the k-sum.

Lemma 4.26. Let S ∈ {0,1}m×n and let Si ∈ {0,1}mi×ni for i = 1,2 such that S = (S1, x1, . . . , xk−1)⊕k

(S2, y1, . . . , yk−1) for some special rows x1, . . . , xk−1 of S1, and y1, . . . , yk−1 of S2. Assume that

S1,S2,S are slack matrices, and that the rows x1, . . . , xk−1, y1, . . . , yk−1 are non-redundant for

S1,S2 respectively. Then the corresponding special rows in S are non-redundant as well.

Proof. Assume by contradiction that r is a special row of S which is redundant, hence there

exists another row r ′ of S such that r ′ ≤ r (i.e. r ′ has a zero in correspondence of every zero of r ).

Without loss of generality r ′ corresponds to a row r1 of S1, i.e. r ′ consists (up to permutation)

of r1 repeated n2 times, and similarly r corresponds to a special row of S1, say x1. But then it is

clear that r1 ≤ x1, i.e. x1 is redundant in S1. �

4.4.3 Numerical experiments

So far, we showed that the operation of k-sum decomposes a 0/1 slack matrix into two 0/1 slack

matrices, and we provided an algorithm to recognize k-sums and provide such decomposition.

Now, a natural question is how relevant is the operation of k-sum in the context of 2-level

polytopes, in other words how many of the (finitely many) 2-level polytopes of dimension

d can be constructed from lower dimensional polytopes via this operation. This is a non-

trivial problem, in particular because it is not clear a priori whether the decomposition as

k-sum is unique for k ≥ 2, hence how many different combinations of lower dimensional
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polytopes (and of the choices of the special rows) can give rise to the same polytope up to

isomorphism. As a partial answer to this problem, we performed some numerical experiments

on a database of 2-level polytopes of dimension up to 7, obtained by the authors of [10]1. We

implemented the algorithms from Theorem 4.22 and 4.25 in Matlab2 and run them on the

database. The results are listed in Table 4.1. As the table shows, there is some evidence that

many 2-level polytopes (maybe a constant fraction of the total) are obtained via k-sum from

lower dimensional 2-level polytopes, with consequences on their structure and extension

complexity (see Corollary 4.12). Further research is needed to derive general estimates of the

number of 2-level polytopes that are k-sums, and maybe to find other operations to represent

2-level polytopes that are not.

Dimension 1 2 3 4 5 6 7
1-sums 0 1 2 6 22 126 1276
2-sums 1 4 29 307 6435
3-sums 1 13 179 4786
4-sums 0 12 439
5-sums 0 7
6-sums 0
k-sums 0 1 3 11 64 624 12943

Total 1 2 5 19 106 1150 27292

Table 4.1 – The table lists the number of 2-level polytopes of a given dimension, from 1 to 7,
that are k-sums, for k = 1, . . . ,6. The second-to-last row indicates the total number of k-sums,
and the last row the total number of 2-level polytopes of each dimension.

4.4.4 Matroid polytopes

We now argue that the results in Section 4.4 imply that we can recognize the slack matrix of a

2-level base matroid polytope in polynomial time.

We will use basic notions of matroid theory that have already been defined in Chapter 2,

Section 2.4. We also recall that, given a matroid M(E ,B), the dual matroid of M , denoted

by M∗, is the matroid on E whose bases are the complements of the bases of M . We remark

that, for any matroid M , the base polytopes B(M) and B(M∗) are affinely equivalent via the

transformation f (x) = 1−x and hence have the same slack matrix.

We will use again Theorem 2.21 from [48]: the base polytope of a matroid M is 2-level if and

only if M can be obtained from uniform matroids through direct sums and 2-sums. As the

reader might imagine, the operation of direct sum of matroids is equivalent to the 1-sum of

slack matrices of the corresponding base polytopes, and we will show a similar relation for the

1The database can be found in https://github.com/ulb/tl and it has been extended to dimension 8. However,
for reasons of computational power we only investigated polytopes of dimension at most 7.

2The code can be found at http://disopt.epfl.ch/files/content/sites/disopt/files/users/249959/ksum.zip
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2-sum, even though we will need further assumptions (see 4.28 and 4.30 below). We remark

that this correspondence breaks down for k ≥ 3: the operation of 3-sum on matroids (whose

definition can be found in [80]) does not correspond to the 3-sum of matrices. The general idea

is to decompose our candidate slack matrix as 1-sum and 2-sum until each factor corresponds

to the slack matrix of a uniform matroid. The latter can be easily recognized: indeed, as already

remarked, the base polytope of the uniform matroid Un,k is the (n,k)-hypersimplex, described

as

B(Un,k ) =
{

x ∈RE : 0 ≤ xe ≤ 1,
∑

e
xe = k

}
.

If 2 ≤ k ≤ n −2, the (non-redundant) slack matrix S of B(Un,k ) has 2n = 2|E | rows and
(n

k

)
columns of the form

[
v 1− v

]ᵀ
where v ∈ {0,1}n is a vector with exactly k ones, hence can be

recognized in polynomial time (in the size of S). We denote such matrix by Sn,k . If k = 1, or

equivalently k = n −1, S = Sn,1 = Sn,n−1 is just the identity matrix In . The case k = 0 or k = n

corresponds to a non-connected matroid whose base polytope is just a single vertex, and can

be ignored for our purposes.

We will now investigate the relation between 1-sum and 2-sum of matroids and of the slack

matrices of the corresponding base polytope.

We first need some preliminary assumptions. Let M(E ,B) be a matroid such that B(M) is

2-level, and let S be a 0/1 slack matrix of B(M). From now on we assume that:

1. M does not have loops or coloops.

2. S has a row for each inequality of the form x(e) ≥ 0 for e ∈ M (we refer to such rows as

non-negativity rows).

3. S does not have any constant row (i.e. all zeros or all ones).

Assumption 1 is without loss of generality as, if e is a loop or coloop of M , then B(M) has a

constant coordinate in correspondence of e and is thus isomorphic to B(M −e).

We now justify the Assumption 2. In general, the non-negativity inequalities are not necessarily

facet-defining. However, we claim that we can always assume that they correspond to rows of

S, and in particular this does not affect whether S is a 1-sum or a 2-sum. Let us first consider

the case in which M is connected. The following is a well known result that can be found for

instance in [95]:

Lemma 4.27. Let M be a connected matroid, then for any e ∈ E, at least one of M − e, M/e is

connected.

From Theorem 2.28 it follows that the inequality x(e) ≥ 0 (resp. x(e) ≤ 1) is facet defining

for B(M) if and only if M − e (resp. M/e) is connected. Then by Lemma 4.27 one of the two
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inequalities is always facet-defining for any e ∈ E , i.e. one of the two corresponding rows r

is always in S: but the other row is equal to 1− r , it hence clearly can always be added to S:

S + (1− r ) is a 1-sum (resp. 2-sum) if and only if S is. Now, if M is not connected, then for any

e ∈ E there is a connected matroid M1 with M = M1 ×M2 and e element of M1. Moreover, it

is easy to see that B(M) = B(M1)×B(M2), and that x(e) ≥ 0 (or x(e) ≤ 1) is facet defining for

B(M) if and only if it is for B(M1). This proves our claim.

Finally, as remarked in Section 4.1.1, Assumption 3 is without loss of generality, and, thanks

to Assumption 1, it is not in contradiction with Assumption 2 (clearly a non-negativity row is

constant if and only if the corresponding element is a loop or a coloop).

Now, let us focus on the operation of 1-sum. On one hand, it is clear that, if S1,S2 are the

slack matrices of B(M1),B(M2) respectively, then S1⊕S2 is the slack matrix of B(M1)×B(M2) =
B(M1 ⊕M2). We now need to prove that the converse holds, i.e. we need to make sure that,

whenever we decompose the slack matrix of a matroid base polytope as a 1-sum, the factors

are still matroid base polytopes.

Lemma 4.28. Let M(E ,B) be a matroid such that B(M) admits a slack matrix S with 0/1 entries.

If S = S1 ⊕S2 for some matrices S1,S2, then there are matroids M1, M2 such that M = M1 ⊕M2

and Si is a slack matrix of B(Mi ) for i = 1,2.

Proof. By Assumption 2, S contains all the rows corresponding to inequalities x(e) ≥ 0, for

any e element of M . Each such non-negativity inequality belongs either to S1 or to S2, hence

we can partition E into E1,E2 accordingly. Notice that none of E1,E2 can be empty: if for

instance E2 is empty, then all the rows corresponding to x(e) ≥ 0 belong to the partition R1

(defined as usual). But then the slack of a vertex with respect to every other inequality (of form

x(U ) ≤ rk(U )) depends entirely on the slack with respect to the rows in R1, implying that a

column of S|R1
can be completed to a column of S in a unique way. Hence, since S is a 1-sum,

we must conclude that S2 is made of a single column, contradicting the fact that S does not

have constant rows (Assumption 3).

Now, let Bi = {B ∩Ei : B ∈ B} for i = 1,2. By definition of 1-sum of matrices, B(M) = {B1 ∪
B2 : Bi ∈ Bi for i = 1,2}. This implies that M = M1 ⊕M2 where Mi = M |Ei

for i = 1,2, thus

B(M) = B(M1)×B(M2). Hence, for every row of S corresponding to an inequality x(U ) ≤ rk(U ),

we have either U ⊂ E1, U ⊂ E2, or the inequality is redundant and can be removed. In the first

case, clearly the row is in R1 as its entries depend only on the rows x(e) ≥ 0 for e ∈ E1, and

similarly in the second case the row is in R2. As by removing redundant rows we do not change

the polytopes of which S,S1,S2 are slack matrices, we then conclude that Si is a slack matrix

of B(Mi ) for i = 1,2. �

Corollary 4.29. Let M be a matroid such that B(M) has a 0/1 slack matrix S. Then M is

connected if and only if S is not a 1-sum.
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We now deal with slack matrices of connected matroids and with the operation of 2-sum. We

already dealt with the case of uniform matroids. To consider matroids which are 2-sums, we

recall that, by Theorem 2.21, every connected matroid whose base polytope is 2-level is a

2-sum of uniform matroids, which form the vertices of a tree as in Theorem 2.33. Hence, by

picking a leaf of the tree, we can assume that our candidate slack matrix is 2-sum of a uniform

matroid and some other matroid.

Lemma 4.30. Let M(E ,B) be a connected matroid such that B(M) has a 0/1 slack matrix S.

Assume there are S1,S2 such that S = (S1, x1)⊕2 (S2, y1), let S′
1 = S1 + (1−x1) and similarly for

S′
2. Assume that S1 or S′

1 is equal to Sn,k for some n > k ≥ 1. Then there is a matroid M2 such

that M =Un,k ⊕2 M2 and S′
2 is a slack matrix of B(M2).

Proof. As already argued we can assume that S has rows corresponding to all the non-negativity

inequalities. We first claim that the special row r does not correspond to any non-negativity

inequality: indeed, if it corresponds to x(e) ≥ 0 for some e ∈ E , then it is not hard to see that

S00 is the slack matrix of M −e, and similarly S11 is the slack matrix of M/e. But both matrices

are 1-sums, hence by Corollary 4.29, none of M − e, M/e is connected, a contradiction by

Lemma 4.27. Hence, each inequality x(e) ≥ 0 corresponds to a row of either S1 or S2, giving

a partition of E in E1,E2. We will now proceed similarly as in the proof of Lemma 4.28: first,

by noticing that the slack of any vertex with respect to x(U ) ≤ rk(U ) depends exclusively on

the slack with respect to the non-negativity inequalities, we can again conclude that E1,E2 are

not empty. Since S1 = Sn,k is the slack matrix of Un,k , the special row x1 of S1 corresponds to

the inequality x(p) ≥ 0, or x(p) ≤ 1 for some element p: we can assume that S1 contains both

rows (which are opposite), so that we do not need to mention S′
1, and similarly for S2, and we

consider the case in which x1 corresponds to x(p) ≥ 0, the other being analogous. Notice that

p is not in E , as the special row of S does not correspond to a non-negativity inequality. Let us

define M1 =Un,k on ground set E ′
1 = E1 +p, with base set B1 =

(E ′
1

n

)
and let:

B2 = {B2 +p : B1 ∪B2 ∈B,B1 ⊂ E1, |B1| = k}∪ {B2 : B1 ∪B2 ∈B,B1 ⊂ E1, |B1| = k −1}.

We remark that the two sets forming B2 are both non-empty and, due to the 2-sum structure

of S, a set B2 ∈ B2 can be completed to a basis of M by adding any B1 ∈ B1 that satisfies

p ∈ B1∆B2, and removing p. Hence, if we show that M2 with ground set E ′
2 = E2 +p and base

set B2 is a matroid, we will have that M = M1 ⊕2 M2. In particular we now show that B2

satisfies the axioms for the base set of a matroid: it is non-empty (which is clear) and for

any B2,B ′
2 ∈B2 and e ∈ B2 \ B ′

2, there exists f ∈ B ′
2 \ B2 such that B2 − e + f ∈B2. We fix such

B2,B ′
2,e and distinguish a number of cases.

1. p ∈ B2 ∩B ′
2. Then for any B1 ∈ B1 with p 6∈ B1 we have that B1 ∪B2 − p,B1 ∪B ′

2 − p

are bases of M , hence by applying the base axiom to them we obtain that there exists

f ∈ (B1 ∪B ′
2 − p) \ (B1 ∪B2 − p) = B ′

2 \ B2 such that B1 ∪B2 − p − e + f ∈ B, but then

B2 −e + f ∈B2 by definition.
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2. p 6∈ B2 ∪B ′
2. This case is analogous to the previous one.

3. p ∈ B2 \ B ′
2, and e 6= p. Let B1,B ′

1 ∈ B with B1∆B ′
1 = {p, g } and in particular p ∈ B ′

1 \ B1.

Then we have B = B1 ∪B2 −p,B ′ = B ′
1 ∪B ′

2 −p ∈B. Then by the base axiom there exists

f ∈ B ′ \ B with B −e + f ∈B. Since g ∈ B1 \ B ′
1 ⊂ B \ B ′, we have g 6= f and we conclude

that f ∈ B ′
2 \ B2, hence B2 −e + f ∈B2.

4. p ∈ B2 \B ′
2, and e = p. This case is analogous to the previous one, but we apply the axiom

to g ∈ B \ B ′ instead of e.

5. p ∈ B ′
2 \ B2. Let B1,B ′

1 ∈B with B14B ′
1 = {p, g } and in particular p ∈ B1 \ B ′

1, then again

B = B1 ∪B2 −p,B ′ = B ′
1 ∪B ′

2 −p ∈B and there is f ∈ B ′ \ B with B −e + f ∈B. If f ∈ B ′
2,

then f 6∈ B2 an we are done as before. Otherwise f = g , then B −e + g = B ′
1 ∪B2 −e ∈B,

but then by definition B2 −e +p ∈B2.

Now, we have M = M1 ⊕2 M2 by construction. Hence B(M) is isomorphic to B(M1)×B(M2)∩
{xp + yp = 1}, thanks to Lemma 2.24, and can hence be described by: a description of B(M1), a

description of B(M2), and the equalities x(E1)+y(E2) = rk(M), xp+yp = 1, which do not appear

in the slack matrix. Now, as S1 is the slack matrix of B(M1), the rows of R2 must correspond to

a description of B(M2): from this we conclude that S2 is a slack matrix of B(M2). �

We are now ready for the main theorem of the section.

Theorem 4.31. Let S ∈ {0,1}n×m . There is an algorithm that is polynomial in n,m and decides

whether S is the slack matrix of B(M) for a matroid M.

Proof. First, we need to ensure that, if M1, M2 are connected, M = M1 ⊕2 M2 and Si is a slack

matrix of B(Mi ) for i = 1,2, then the slack matrix of B(M) is actually the 2-sum of S1,S2

for some special rows x1, y1. If p is the common element of M1, M2, x1 must be the row

corresponding to x(p) ≥ 0, and y1 the row corresponding to y(p) ≤ 1, or viceversa. Then,

to conclude that S is equal to (S1, x1)⊕2 (S2, y2), we only need the special rows to be non-

redundant, as this ensures that no row is lost when doing the 2-sum (see Lemma 4.26). We

already mentioned that the inequality x(p) ≥ 0 (resp. x(p) ≤ 1) is non-redundant for B(M) if

and only if M−p (resp. M/p) is connected. Moreover, thanks to Theorem 2.21, we can consider

each Mi as a 2-sum of uniform matroids, among which there will be Un1,k1 ,Un2,k2 containing

the element p. Since our matroids are connected, by Proposition 2.23 we can assume that

ni ≥ 3 and 1 ≤ ki ≤ ni −1 for i = 1,2. It can be easily checked that, for any M ′, M ′
1, M ′

2 with

M ′ = M ′
1 ⊕2 M ′

2, and e element of M ′
1, M ′ − e = (M ′

1 − e)⊕2 M ′
2 and M ′/e = (M ′

1/e)⊕2 M ′
2;

moreover, M ′ is connected if and only if M ′
1, M ′

2 are. Using this, we can focus on whether

Uni ,ki −p,Uni ,ki /p are connected for i = 1,2. Notice that by Lemma 4.27 one of the two must be

connected. If for one i we have 2 ≤ ki ≤ ni −2, then both of Uni ,ki −p,Uni ,ki /p are connected,

hence we can always find a suitable couple of non-redundant special rows. If, k1 = 1, and

k2 = n2−1, Un1,1−p =Un1−1,1 is connected (since n1 ≥ 3) and similarly Un2,n2−1/p =Un2−1,n2−2
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is connected, hence we find our non-redundant special rows. The only problematic case arises

when k1 = k2 ∈ {1,ni −1} for i = 1,2. But we can assume that the latter case is never verified as

we have Un1,1 ⊕2 Un2,1 =Un1+n2−2,1 and similarly Un1,n1−1 ⊕2 Un2,n2−1 =Un1+n2−2,n1+n−3.

Now, let S be a 0/1 matrix, we summarize the process of determining whether S is a slack

matrix of B(M) for some matroid M . First, we check whether S = Sn,k for some n and k, in

which case we are done. Then, we run the algorithm to recognize 1-sums, and if S is a 1-sum,

we decompose it in factors S1, . . . ,St which are not 1-sums and test each Si separately. This can

be done efficiently thanks to Theorem 4.22, and using Lemma 4.28 we have that S is the slack

matrix of B(M) if and only if Si is the slack matrix of B(Mi ) for each i , and M = M1 ⊕·· ·⊕Mt .

We can now assume that S is irreducible (i.e. it is not a 1-sum). In order to apply Lemma

4.30, we need to check whether S is a 2-sum with respect to any special row, until we detect a

decomposition where one of the two factors has form Sn,k (informally, such factor corresponds

to a leaf in the tree decomposition of M). Then we continue on the other factor, until we

decompose S as a repeated 2-sum of matrices S1, . . . ,St where Si = Sni ,ki for i = 1, . . . , t (of

course, if this is not possible, we conclude that S is not a slack matrix of a base polytope).

The Si ’s form a tree structure T similarly as the factors of a 2-sum of a matroid, but their

2-sum does not necessarily correspond to a matroid. Indeed, each Si is the slack matrix of

both Uni ,ki and its dual, and the form of each special row (whether x(p) ≥ 0 or x(p) ≤ 1) must

be coherent: if S1 is the slack matrix of Un1,k1 , this determines the form of its special row,

and of the special row of each neighbor of S1, but conflicts may arise as, if some of the Si

is the identity matrix, then the form of their special row is fixed. This problem can be seen

as trying to color a tree with two colors, where some nodes can have a predetermined color.

However, if there exists a feasible coloring, then this coloring determines a matroid M , and is

essentially unique: it is easy to see that the only other possible coloring gives rise to the dual

matroid M∗. To check whether there exist a feasible coloring can be done efficiently, and this

concludes the algorithm. Notice that, in case S is the slack matrix of B(M), M(or its dual) can

be reconstructed by successively taking the 2-sum of the Si ’s. �

4.5 Matroid polytopes: an alternative approach

In this section we describe an alternative approach to recognize slack matrices of 2-level base

matroid polytopes, in the case the matroid is connected. This, together with Theorem 4.22 and

Lemma 4.28, provides an alternative proof of Theorem 4.31 which is not based on 2-sum of

slack matrices. This approach is based on some properties of (not necessarily 2-level) matroid

polytopes which might be of independent interest, as they offer new connections between

the facial structure of a matroid polytope and the structure of the matroid itself. Moreover,

as most of the proof does not use 2-levelness, the results in this section could be extended to

recognize slack matrices of general matroid polytopes (see Remark 4.39).

Throughout the section we assume that M(E ,B) is a connected matroid. Given S ∈ {0,1}m×n ,

we want to decide whether it is a slack matrix of B(M) for some M . If it is, we say we are
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in the YES case. As remarked in Section 4.1.1, we can assume that, in the YES case, S is a

non-redundant slack matrix.

The very first step of the algorithm is to obtain a graph H from S that, if S is a slack matrix

of P , is the skeleton of P . We recall that the skeleton of P is the graph whose vertices are the

vertices of P , and where two vertices are adjacent if they are in P (i.e. if their segment is a

1-dimensional face of P ). It is easy to see that we can efficiently obtain H : for any two columns

i , j , consider all the rows r with Sr i = Sr j = 0. Vertices i , j are adjacent if and only if there is no

other column for which all of these rows have value 0. The structure of the skeleton of matroid

polytopes is well known, see for instance [38]: two vertices χB1 ,χB2 of B(M) are adjacent if and

only if |B14B2| = 1. In this case we abuse notation and say that B1,B2 are adjacent, and write

B1 = B2 +e − f for some e, f ∈ E .

We will proceed as follows: we first assume that we are in the YES case and prove some

properties of the skeleton H . In particular, we show that a maximal clique in H corresponds to

a circuit or a cocircuit of M , and identify from this which rows of the slack matrix induce the

inequalities 0 ≤ x ≤ 1, i.e. what are the elements of the ground set of M . This naturally implies

an efficient algorithm that, given S as input, produces a list Ł that in the YES case is the set

C (M) of the circuits of a matroid M . From that, we reconstruct M and the vertices and facets

of its base polytope, hence we can compute the slack matrix of B(M) and verify whether we

are in the YES case or not.

Recall the non-redundant description of B(M) given in Equation (2.6). We call the elements

e such that M/e is connected contractible elements, and similarly the elements e such that

M −e is connected are called deletable. We remark that contractible elements are flacets, but

here we want to consider them separately. A facet-defining inequality of the form x(e) ≥ 0 or

x(e) ≤ 1 will be called an element inequality (and the corresponding row in the slack matrix

will be an element row), and an inequality of the form x(F ) ≤ rk(F ) for F ∈F with |F | ≥ 2 will

be called a flacet inequality (and the corresponding row will be a flacet row).

4.5.1 Phase 1: finding the circuits of M

In this section we observe a correspondence between the cliques of H , the skeleton of B(M),

and the circuits and cocircuits of M . It is easy to notice that a circuit C in M generates maximal

cliques of size |C | in H : each clique consists of bases that are equal everywhere except on C ,

and each basis lacks a different element of C . In what follows, we are going to focus on circuits

of size at least 3. The reasons of this will be made clear at the end of the section. We remark

that the results of this subsection do not use the fact that B(M) is 2-level.

Lemma 4.32. Let B1,B2,B3 be three distinct bases of M such that ∆= {B1,B2,B3} is a clique of

H. Then there is a unique maximal clique K = {B1, . . . ,Bk } containing ∆, and there are elements

e1, . . . ,ek such that one of the following holds:

1. ei ∈ B j if and only if i 6= j , and e1, . . . ,ek is a circuit of M (we say that K induces a circuit
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in M).

2. ei ∈ B j if and only if i = j , and e1, . . . ,ek is a cocircuit of M (we say that K induces a

cocircuit in M).

Proof. Since B1,B2,B3 are pairwise adjacent, we have that there exist e12, e21, e13, e31, e23,

e32 ∈ E with e12 6= e21,e13 6= e31,e23 6= e32, such that

B1 = B2 −e12 +e21 = B3 −e13 +e31, B2 = B3 −e23 +e32,

which implies

B3 −e13 −e21 +e31 +e12 = B3 −e23 +e32.

We consider two cases:

1. e13 = e12, which implies e21 = e23 and e31 = e32. We can then simplify the notation and

write e1 for e13,e12, e2 for e21,e23, e3 for e31,e32. The previous relations become:

B1 = B2 −e1 +e2 = B3 −e1 +e3, B2 = B3 −e2 +e3,

in other words we have ei ∈ B j if and only if i 6= j for i , j ∈ [3]. Now, we proceed to prove

that there is a unique maximal clique containing ∆. Let B be a basis that is adjacent

to B1,B2,B3 (in short we write that B is adjacent to ∆). We first claim that e1,e2,e3 ∈ B .

Indeed, assume by contradiction that e1 6∈ B . Then {e1} = B2 \B , hence B = B2−e1+e for

some e 6= e2 (otherwise B = B1). Hence e2 6∈ B , but then {e1,e2} ⊆ B3 \ B , a contradiction

to the fact that B ,B3 are adjacent. Now, consider two distinct B ,B ′ bases adjacent to ∆,

we show that B ,B ′ must be adjacent. If they are not, there are elements e, f ∈ E such that

{e, f } ⊆ B ′ \ B . Since B ,B1 are adjacent, we can assume without loss of generality that

e 6∈ B1, but then {e} = B ′ \ B1 = {e1}, in contradiction with the fact that e1 ∈ B must hold.

It then follows that the maximal clique K = {B1, . . . ,Bk } ⊇∆ is unique. If k ≥ 4, consider

B4, which contains e1,e2,e3. We have B4 = B1 − e + e1 = B2 − f + e2 = B3 − g + e3, but

since B1 +e1 = B2 +e2 = B3 +e3, we get e = f = g and we can denote this element by e4

(note that it is clearly distinct from e1,e2,e3). Iterating the argument for Bi , i = 5, . . . ,k,

we can obtain e5, . . . ,ek ∈ E and verify that for any i , j ∈ [k], ei ∈ B j if and only if i 6= j .

Now, from the maximality of K it follows that {e1, . . . ,ek } is the unique circuit contained

in B1 +e1 = ·· · = Bk +ek .

2. We now assume e13 6= e12. Now, if e31 6= e21, we must have e13 = e21 = e23, e31 = e12 = e32,

but this implies B2 = B3, a contradiction. Hence we have e31 = e21, that implies e13 = e23,

e12 = e32. We will now proceed analogously as the previous case. We can write e1 for

e31,e21, e2 for e12,e32, e3 for e13,e23. The previous relations become:

B1 = B2 −e2 +e1 = B3 −e3 +e1, B2 = B3 −e3 +e2,

82



4.5. Matroid polytopes: an alternative approach

in other words we have ei ∈ B j if and only if i = j for i , j ∈ [3]. Let B be a basis that

is adjacent to B1,B2,B3 (in short we write that B is adjacent to ∆). We first claim that

e1,e2,e3 6∈ B . Indeed, assume by contradiction that e1 ∈ B . Then B = B2 −e +e1 for some

e 6= e2, otherwise B = B1. But then e2 ∈ B hence {e1,e2} ⊆ B \ B3, a contradiction. Now,

consider two distinct B ,B ′ bases adjacent to ∆, we show that B ,B ′ must be adjacent.

If they are not, there are elements e, f ∈ E such that {e, f } ⊆ B ′ \ B . Now, since B ′,B1

are adjacent we can assume without loss of generality that e ∈ B1. But, since e 6= e1,

we have {e,e1} ⊆ B1 \ B , a contradiction with the fact that B ,B1 are adjacent. Hence we

proved that in this case as well the maximal clique K = {B1, . . . ,Bk } ⊇∆ is unique. If k ≥ 4,

consider B4, we have e1,e2,e3 6∈ B4, hence B4 = B1 − e1 + e = B2 − e2 + f = B3 − e3 + g

and we conclude e = f = g := e4. Iterating the argument for Bi , i = 5, . . . ,k, we can

obtain e5, . . . ,ek ∈ E and verify that for any i , j ∈ [k], ei ∈ B j if and only if i = j . Now,

let D = {e1, . . . ,ek }, we need to show that D is a cocircuit of M , i.e. D is dependent in

M∗ (equivalently, D ∩B 6= ; for any B ∈ B) and is minimal with this property. The

minimality follows immediately as for any i = 1, . . . ,k one has Bi ∩ (D −ei ) =;. To prove

that D is dependent in M∗, assume by contradiction that there is B ∈B with D ∩B =;.

Then, applying the basis exchange axiom to B1,B , we get that there is e ∈ B \B1 such that

B ′ = B1 −e1 +e ∈B. Now, B ′∩D =; and B ′ is adjacent to B1. Since K is maximal and

B 6∈ K , without loss of generality B is not adjacent to B2. But B ′ = B1−e1+e = B2−e2+e,

a contradiction.

�

To prove the next lemma, we need a few facts.

Observation 4.33. Let M a matroid, C (respectively D) be a circuit (cocircuit) of M and F ⊂ E.

1. If F is a flat of M, |C | ≥ 2 and |C ∩F | ≥ |C |−1, then C ⊂ F .

2. If M |F has no coloops, then E −F is a flat of M∗.

3. If M |F has no coloops, |D| ≥ 2, and F ∩D 6= ;, then |F ∩D| ≥ 2.

4. Let M be connected. Then F is a flacet of M if and only if E −F is a flacet of M∗.

Proof. 1. Assume that C ∩ F = C − e for some e ∈ C . C − e is independent, hence it is

contained in a basis B of M |F . Since F is a flat, we have rk(F + e) > rk(F ) = |B |, but

then in M |(F + e) B is a independent set which cannot be extended to any basis, a

contradiction.

2. E −F is a flat of M∗ if and only if for any e ∈ F , rk∗(E −F +e) > rk∗(E −F ), where rk∗ is

the rank function of M∗. Since rk∗(A) = rk(E − A)+|A|− rk(E ) for any A ⊂ E , the latter is

equivalent to rk(F −e)+1 > rk(F ), which holds since M |F has no coloops.
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3. This immediately follows from the previous two statements: we have that E −F is a flat

of M∗ and D is a circuit of M∗, hence |F ∩D| < 2 would imply |D ∩ (E −F )| ≥ |D|−1 =⇒
D ⊂ E −F , in contradiction with F ∩D 6= ;.

4. The statement immediately follows from the fact that a matroid is connected if and

only if its dual is, and from the following relations between contraction, restriction and

deletion: M |F = M \ (E −F ) = (M∗/(E −F ))∗, and M/F = (M∗|(E −F ))∗. These facts are

well known and can be found for instance in [80].

�

Observation 4.34. Let M = M1 ⊕2 M2.

1. Let e ∈ E1 −p (resp. E2 −p). Then M −e = (M1 −e)⊕2 M2 (resp. M1 ⊕2 (M2 −e)).

2. Let C ⊂ E such that C ∩E(Mi ) 6= ; for i = 1,2. Then C is a circuit of M if and only if

Ci = (C ∩Ei )+p is a circuit of Mi for i = 1,2.

Proof. We only prove the second fact as the first follows immediately from the definition of 2-

sum. First notice that if I1, I2 are independent sets of M1, M2 respectively, such that p ∉ I1 ∪ I2

and I1 ∪ I2 is dependent in M , then Ii +p is dependent in Mi for i = 1,2. Let C be a circuit of

M . For i = 1,2, C ∩Ei is independent (in M and in Mi ), and C is dependent in M , hence Ci is

dependent in Mi . We are left to show that, for any e ∈Ci , Ci − e is independent in Mi . This

is clear for e = p, so let e 6= p. We consider without loss of generality the case i = 1. We know

that C − e is independent in M , so C − e ⊂ B1 ∪B2 −p for bases B1 of M1 and B2 of M2 with

p ∈ B14B2. Moreover, C −e =C1 ∪C2 −p −e. Hence C2 −p ⊂ B2 but since C2 is dependent in

M2, p ∉ B2, hence p ∈ B1. Therefore C1 −e ⊂ B1 i.e. C1 −e is independent in M1.

Now let C1,C2 be circuits in M1, M2. If C is independent in M , then either C1 is independent in

M1 or C2 in M2, a contradiction. Let e ∈C , assume without loss of generality e ∈ E1. Note that

C −e ⊂C1−e ∪C2−p. By definition, C1−e is independent in M1 and C2−p is independent in

M2. Since by definition of 2-sum p is not a loop of M1 (resp. a coloop of M2), we extend C1 −e

(resp. C2 −p) to a basis B1 of M1 (resp. B2 of M2) containing p (resp. not containing p). As

C −e ⊆C1 −e ∪C2 −p ⊆ B1 ∪B2 ∈B(M), we conclude that C −e is independent in M . �

Observation 4.35. Let M be 3-connected such that M −e is not connected. Then M =U3,2.

Proof. Recall that M is k-connected if it has no s-separation for s = 1, . . . ,k −1, where an s-

separation is a set X ⊂ E such that |X |, |E−X | ≥ s, and rk(X )+rk(E−X ) < rk(M)+s. Since M−e

is not connected (i.e. 2-connected), it has a 1-separation, i.e. there is ; 6= X ( E −e such that

rk(X )+ rk(E −e −X ) = rk(M −e) = rk(M), where the last equality holds since M is connected.

Assuming without loss of generality that |X | ≤ |E − (X +e)|, we have rk(X +e)+ rk(E −e −X ) ≤
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rk(M)+1, but since M is 3-connected, X +e cannot be a 2-separation. Hence we must have

|X | = |E −(X +e)| = 1 which implies |E | = 3. Now, the rank of M −e cannot be 0 or 1 since M −e

is not connected but it does not have loops (or M would have loops). Hence rk(M −e) = 2 i.e.

M −e =U2,2. Then we have that, if E = {a,b,e}, rk(M) = 2 and {a,b} is a basis. Moreover, {a,e}

without loss of generality is a basis (since e is not a loop) but then {b,e} must be a basis as well,

or a would be a coloop of M . �

Lemma 4.36. Let M be a connected matroid, F , C a flacet and circuit of M respectively, such

that |F | ≥ 2 and F ∩C = {e} for some e ∈ M. Then M −e is connected.

Proof. Let M ,F,C ,e as in the hypotheses and assume by contradiction that M −e is not con-

nected. If M is 3-connected, M = U3,2 thanks to Observation 4.35. But then we would get

a contradiction as uniform matroids do not have flacets which are not singletons (see Ob-

servation 2.32. Hence M is not 3-connected and can be written as a 2-sum of 3-connected

matroids: M = M1⊕2 · · ·⊕2 Mk , with k > 1. Among all counterexamples M to the theorem, take

one with k minimum. Let M1 be the unique matroid among M1, . . . , Mk such that e ∈ E(M1).

From Observation 4.34 and from the fact that if M = M ′⊕2 M ′′, M is connected if and only if

M ′, M ′′ are (Proposition 2.20), we derive that M1 −e is not connected, hence M1 =U3,2. This

implies that M1 has three elements, say a,b,e, not all of which are in E (M) as they are deleted

by 2-sums. Now, let T be the tree decomposition of M according to Theorem 2.33 and let v be

the vertex of T corresponding to M1. v has degree at most 2. First suppose that v has degree

1, i.e. it is a leaf. Then we can write M =U3,2 ⊕M ′ for some appropriate matroid M ′, with

b ∈ E(M ′). But then either a 6∈C , which implies by Observation 4.34 that {e,b} is a circuit of

M1 (a contradiction), or a 6∈ F . In the latter case by Theorem 2.30 (and since {e}( F ) we must

have that {e,b} is a flacet of U3,2, in contradiction with Observation ??. Now suppose that v

has degree 2, i.e. there are M ′, M ′′ such that M = M ′⊕2 M ′′, E (M ′)∩E (M ′′) = {b} (i.e. b 6∈ E (M))

and v is a leaf in the decomposition tree of M ′. We apply Theorem 2.30 to M and consider

several cases for F :

1. F = E(M ′)∪F ′′−b, where F ′′ is a flacet of M ′′ containing b. But then C ⊂ E(M ′′)+ e

(since C ∩F = {e} and E(M ′)−b ⊂ F ), which implies by Observation 4.34 that {e,b} is a

circuit of M ′, hence of M1, a contradiction.

2. F = E (M ′′)∪F ′−b, where F ′ is a flacet of M ′ containing b. In this case, C ⊂ E (M ′)−b is

a circuit of M ′, |F ′| ≥ 2 since e,b ∈ F ′, and F ′∩C = {e}. But then the hypotheses of the

theorem are satisfied by M ′, F ′, C , contradicting to the minimality of k.

3. F is a flacet of M ′ not containing b. But then the hypotheses of the theorem are satisfied

by M ′, F , C , again a contradiction.

4. F = E(M ′)− b: this implies as before that C ∩E(M ′)+ b = {e,b} is a circuit of M ′, a

contradiction.
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�

Lemma 4.37. Let k ≥ 3 and K = {B1, . . . ,Bk } a maximal clique in H, and let e1, . . . ,ek the

corresponding elements of M from Lemma 4.32. Let RK be the set of rows r of S such that

S(r,Bi ) = 0 for exactly one i ∈ [k], and R ′
K be the set of rows r ′ of S such that S(r ′,Bi ) = 1 for

exactly one i ∈ [k], and r ′ 6= 1− r for all r ∈ RK . Then the following holds:

1. The rows of RK ∪R ′
K correspond to element inequalities.

2. |RK ∪R ′
K | = k and in particular there is exactly an inequality for each ei , i.e. each row of

RK ∪R ′
K corresponds to an inequality x(ei ) ≥ 0 or x(ei ) ≤ 1 for a different i .

3. Case 1 of Lemma 4.32 holds if and only if the rows of RK are of the form x(e) ≥ 0 and the

rows of R ′
K are of the form x(e) ≤ 1. Similarly, case 2 of Lemma 4.32 holds if and only if

the rows of RK are of the form x(e) ≤ 1 and the rows of R ′
K are of the form x(e) ≥ 0 .

Proof. 1. First, let r ∈ RK and assume by contradiction that r is not an element inequality,

hence it is of the form x(F ) ≤ rk(F ) with F ∈ F and |F | ≥ 2. At the cost of renaming

B1, . . . ,Bk , we have |F ∩B1| = rk(F ) and |F ∩Bi | = rk(F )−1 for i = 2, . . .k. We consider the

two cases of Lemma 4.32:

• Case 1 holds, i.e. e1,e2, . . . ,ek form a circuit. But then for any i = 2, . . . ,k, ei =
B1 \ Bi ∈ E(F ) and by Observation 4.33, fact 1, this implies e1 ∈ E(F ), which yields

|B1 ∩E(F )| = |Bi ∩E(F )| for any i = 2, . . . ,k, a contradiction.

• Case 2 holds, i.e. e1,e2, . . . ,ek form a cocircuit D. But then e1 = B1 \ B2 = ·· · =
B1 \ Bk ∈ F , and for i = 2, . . . ,k ei 6∈ F , i.e. D ∩ F = {e1}, in contradiction with

Observation 4.33, fact 3.

This proves that every r ∈ RK is an element row. Now assume that there is r ′ in R ′
K of

the form x(F ) ≤ rk(F ) with F ∈F and |F | ≥ 2. This means that without loss of generality

|B1 ∩E (F )| = rk(F )−1, |Bi ∩E (F )| = rk(F ) for i = 2, . . . ,k. We again distinguish two cases,

following Lemma 4.32.

• Case 1 holds and C = {e1, . . . ,ek } is a circuit. But then E(F )∩C = {e1}, hence by

Lemma 4.36 we have that e1 is deletable, hence 1− r ∈ RK , a contradiction.

• Case 2 holds, i.e. D = {e1,e2, . . . ,ek } is a cocircuit . We then have that D∩F = D \{e1}.

Consider the dual matroid M∗, of which D is a circuit. Moreover, E −F is a flacet of

M∗ (Observation 4.33, fact 4), and (E −F )∩D = {e1}, which by Lemma 4.36 implies

that M∗−e1 is connected, but M∗−e1 = (M/e1)∗ and since a matroid is connected

if and only if its dual is, we deduce that e1 is contractible. But then x(e1) ≤ 1 is a

row of RK that is opposite to r , a contradiction.
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2. This is an easy consequence of the previous statement, of the fact that every element in

a connected matroid is either deletable or contractible (Lemma 4.27), and of the fact

that for any e ∈ E , either e = ei for some i or e is in all Bi ’s or in none of them.

3. First, suppose by contradiction that r1,r2 ∈ RK correspond to x(e1) ≥ 0, x(e2) ≤ 1 respec-

tively. This means that, without loss of generality, e1 ∈∩k
i=2Bi \ B1, and e2 ∈ B2 \∪i 6=2Bi .

But this contradicts both case 1, 2 from Lemma 4.32. This argument shows the following:

all the rows of RK are of the same form, all the rows of R ′
K are of the same form, and a

row of RK and a row of R ′
K are of different forms. Now, the statement follows trivially.

�

We are now ready to outline an algorithm to produce C (M). As a first step, for any triangle

∆ in H , we obtain the unique maximal clique K containing ∆ and the corresponding RK ,R ′
K .

Note that we can assume that M contains at least a circuit of size at least 3, otherwise the

fact that M is connected implies M =Un,1: in the latter case B(M) is affinely isomorphic to

the n −1-dimensional simplex and its slack matrix is (a permutation of) the identity matrix,

which can easily be recognized. Hence H contains at least a triangle, i.e. we obtain at least one

maximal clique K , and moreover every element row of S is in some RK or R ′
K : indeed, it is easy

to see that in a connected matroid that is not Un,1 every element belongs to a circuit of size at

least 3. Hence we obtain the element rows of S as a set RE = {r row of S : r ∈ RK ∪R ′
K for some

maximal clique K }. We now need to determine, for each of those rows, whether it has form

x(e) ≥ 0 or x(e) ≤ 1. We will achieve this once we deal with the circuits of M that have size 2.

We first observe the following:

Observation 4.38. Let C = {e, f } a circuit of M, M connected. Then there are two bases B1,B2

such that B1 + e = B2 + f and for any flacet F of M we have |B1 ∩F | = |B2 ∩F |. Moreover, the

columns in S corresponding to B1,B2 differ exactly in the element rows relative to e and f .

Proof. As M is connected, e is contained in a basis B2 (which does not contain f ) hence

B1 = B2 + f − e is a basis: indeed, if it is not there is a circuit C ′ ⊆ B1 containing f , but then

applying the circuit axiom C ∪C ′− f is a dependent set contained in B2, a contradiction. Now

if there is a flacet F such that |B1 ∩F | 6= |B2 ∩F |, this implies that e ∈ F, f 6∈ F without loss of

generality. But this is a contradiction to Observation 4.33, fact 1. The rest follows. �

Notice that the reverse of the previous statement is not true. So in the second step of our

algorithm we go through all the edges of H and create a family C2 which contains subsets

of rows of S which satisfy the conditions of the statement, hence capturing all the circuits

of size 2 and possibly some other set. Formally, ρ = {r1, . . . ,rk }, with 2 ≤ k ≤ 4, is in C2 if and

only if the following three conditions are satisfied: ρ ⊂ RE ; there is an edge B1,B2 of H such

that the columns B1,B2 differ exactly in correspondence of {r1, . . . ,rk }; and there are two rows

in ρ, without loss of generality r1,r2, so that any other row in ρ is opposite to r1 or r2 (for
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instance if k = 4 we have that r3 = 1− r1,r4 = 1− r2). From Observation 4.38 we have that for

any circuit C = {e, f } of M , the element rows corresponding to e, f (which are at most four) are

in a set of C2. Moreover, for any ρ ∈C2, we have that as soon as the form of one of the ri is

determined, the form of the other rows in ρ is determined as well: for instance, if r1,r2 ∈ ρ are

not opposite rows and S(r1,B1) = 1,S(r2,B1) = 0, we must have that r1,r2 have the same form,

so if r1 corresponds to x(e) ≥ 0, r2 must correspond to x( f ) ≥ 0. Notice that the same holds

for RK ,R ′
K , thanks to Lemma 4.37: once we determined whether K is inducing a circuit or a

cocircuit, we know the form of each row in RK ∪R ′
K . We now use this in the final step of our

algorithm.

Let C be the family of subset of rows of S consisting of all the RK ’s, R ′
K ’s and of C2, then every

circuit of M corresponds to some set in C . Our goal is to determine which subsets actually

correspond to circuits (and which to cocircuits). Since as already noticed B(M) and B(M∗)

have the same slack matrix, and the circuits of one are the cocircuits of the other, we can just

fix any of the cliques and assume without loss of generality that it induces a circuit: this will

determine the form of the rows in the corresponding RK ,R ′
K , thanks to Lemma 4.37. Now,

those rows will belong to other sets in C , hence by determining their form we will determine

the form of the other rows in those sets as well. We now argue that this propagates to all

circuits of M . Let CM be the graph with C (M) as vertex set and where two circuits are adjacent

if they share at least one element. Since M is connected, CM is connected. Therefore the

choice on one circuit will eventually lead to identify the form of all the element rows. This

gives us automatically all the circuits of M of size at least 3 (again by Lemma 4.37), and for the

others we can just check for any e, f ∈ E (corresponding to a subset in C2) whether {e, f } is

independent (i.e. whether there exists a basis B ⊃ {e, f }, which we can check once we know the

element inequalities for e, f ). This completes the construction of C (M). Below, we summarize

the main steps of the algorithm.

Algorithm 1:

1 for ∆ triangle of H do
2 Get K maximal clique containing K , and RK ,R ′

K

3 RE = {r row of S : r ∈ RK ∪R ′
K for some K }

4 Get C2, and set C = {RK ,R ′
K for K max clique}∪C2

5 Choose any K and assign to rows in RK the form x(e) ≥ 0, and to rows in R ′
K the form

x(e) ≤ 1
6 Propagate the assignments until the form of all RE has been determined
7 return C (M)

4.5.2 Phase 2: reconstructing B(M) and its slack matrix

We will now show that we can efficiently recognize the slack matrix of B(M) when M is assumed

to be 2-level and connected, once we have the list Ł which, in the YES case, is equal to C (M).

To do this we will essentially reconstruct M , its bases and its flacets, compute the slack matrix
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of B(M) and check whether it is equal to S. In this phase we will use the 2-levelness of B(M),

in particular the results we obtained in Section 2.4.

First, notice that from the previous discussion it follows that L has size polynomial in n,

the number of vertices of H (and of columns of S), as there are at most as many circuit as

there are triangles in H . Now, assuming that L is the list of the circuits of M , this gives us

an independence oracle for M , and with that we can enumerate all the bases of M in total

polynomial time (folklore, see for instance [63]). This implies that we either find n +1 bases

and answer NO (since L and S are not coherent) or we find exactly m bases, in both cases in

polynomial time. Once we have the bases (i.e. the vertices of B(M)) we need to find the facet

defining inequalities of B(M) and check if the resulting slack matrix is equal to S, in which

case we answer YES.

Since checking whether a matroid is connected can be done efficiently (using for instance the

shifting algorithm given in [9]), we can check which element inequalities are facet defining

(and whether this is coherent with the rows in RE ). We now argue that finding the flacets of

our matroids can be done efficiently.

Recall from Theorem 2.33, 2.21 that, since B(M) is 2-level and M is connected, M can be

obtained from some uniform matroids U1, . . . ,Uk by a series of 2-sum operations, which are

represented by a tree T . Also, Theorem 2.35 gives a simple description of the (linearly many)

flacets of M in terms of cuts of T . To obtain T and U1, . . . ,Uk , one has to decompose M in

smaller 3-connected matroids, again using the shifting algorithm. More precisely, we start

from M , we run the algorithm and either obtain that M is 3-connected, or get M1, M2 such that

M = M1 ⊕2 M2, and repeat the algorithm on M1, M2. This procedure can be done efficiently

for any matroid, and moreover at the same time we can get a list of the bases of the smaller

matroids: given B ∈B(M) and M1, M2 on ground set E1,E2, B ∩E1 is a basis of M1 if it has size

rk(M1), and B ∩E1 +p is a basis otherwise, where p is the element so that E1 ∪E2 = E +p.

In this way, once obtained the 3-connected matroids whose 2-sum is M , and their tree struc-

ture, we can check that each of them is uniform by verifying that they have the right number of

bases. We can hence verify that M is 2-level and then check, for any of the (linearly many) sets

described in Theorem 2.35, whether they are flacets, and in this case whether a corresponding

row is present in S. To conclude, we described a polynomial algorithm to recognize whether

a given 0/1 matrix is the slack matrix of B(M), for M 2-level and connected. Together with

Theorem 4.22 and Lemma 4.28, which deal with the case where M is not connected, this gives

an alternative proof of Theorem 4.31.

Remark 4.39. We conclude the section by remarking that this proof of Theorem 4.31 can be

extended to recognize slack matrices of general matroid polytopes, on the assumption that the

flacets of such matroids can be enumerated in total polynomial time. Indeed, the results in

Section 4.5.1 hold for any matroid (notice that the element rows are 0/1 even in slack matrices

of non-2-level matroid polytopes), and in Section 4.5.2 the only part where we explicitly use

the 2-levelness of B(M) is to efficiently obtain the flacets of M and reconstruct the slack matrix.
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Moreover, as already remarked, while we define the 1-sum only on 0/1 matrices, it can be

easily extended to general matrices, as well as all the theorems on the 1-sum. We are not aware

of any result on enumeration of flacets of the kind that is known for bases and circuits (see

[63]).
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5 Extended formulations in output-efficient
time from communication protocols

5.1 Introduction

Yannakakis’ Theorem (Theorem 1.5, see also [100]) implies that an extended formulation

for a polytope can be constructed via a nonnegative factorization of its slack matrix. While

constructive, this result is not output-efficient, since the time needed to produce the extended

formulation does not only depend on the size of the formulation itself but also on the size of

the original description of the polytope. In this chapter we deal with this problem in particular

with respect to factorizations obtained via communication protocols. Most notably, we give

sufficient conditions under which a deterministic communication protocol can be turned in

an algorithm to write an extended formulation in time linear in the size of such formulation.

The most famous example of the application of deterministic protocols to extended formula-

tions is Yannakakis’ protocol [100], that implies the existence of an extended formulation of

quasipolynomial size for the stable set polytope of perfect graphs. Our original motivation

for this work was to make Yannakakis’ result output-efficient: we achieve this by giving two

different algorithms that produce the desired extended formulation in quasipolynomial time,

one as a consequence of a more general theorem and one as a direct and more efficient con-

struction. We also obtain compact formulations for the stable set polytope of some subclasses

of perfect graphs.

Contribution and organization. The chapter is organized as follows:

• In Section 5.2 we describe the connection between communication protocols and exten-

sion complexity from [100], the concept of extended formulation of a pair of polytopes

from [81], and some notions on the stable set polytope and its clique relaxation. We also

clarify the scope of applicability of our results and the assumptions we make in order to

make them efficient, in particular regarding Theorem 5.6.

• In Section 5.3 we give a simple general procedure to construct extended formulations

from deterministic protocols, see Theorem 5.6. We then show the applicability of our

result, by deriving an extended formulation for the stable set polytope of perfect graphs.
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• In Section 5.4, we show that, in interesting special cases, one can derive an explicit,

compact formulation by ad-hoc arguments, without relying on Theorem 5.6. In par-

ticular we give an alternative formulation for ST AB(G), G perfect, that has significant

advantages over the previous one in terms of efficiency and applicability. We also give

formulations the stable set polytope of claw-free perfect graphs and of comparability

graphs.

5.2 Preliminaries

5.2.1 Deterministic and non-deterministic protocols

We start by describing the general setting of communication complexity. For a more detailed

description we refer to [70]. Let M be a matrix with row (resp. column) set X (resp. Y ). Consider

two agents, Alice and Bob, who aim at computing the matrix M under partial information. In

particular Alice is given as input a row index i ∈ X , Bob a column index j ∈ Y , and they aim

at determining Mi j by exchanging information according to some pre-specified mechanism,

that goes under the name of protocol. The protocol that they follow is said to compute M if,

for any input i of Alice and j of Bob, it returns Mi j ; it is deterministic if the actions of Alice

(resp. Bob) at any given step only depend on her (resp. his) input and on what they exchanged

so far. The complexity of such a protocol is the maximum amount of bits exchanged in any

execution. Such a protocol can be modelled as a rooted tree, with each vertex modelling a step

where one of Alice or Bob speaks (hence labelled with A or B), and its children representing

subsequent steps according to the different messages that can be sent at that stage. The leaves

of the tree indicate the termination of the protocol and are labelled with the corresponding

output. Assuming, without loss of generality, that each message exchanged consists of a single

bit, we obtain that the tree is binary, with each edge representing a 0 or a 1 sent. Hence, a

deterministic protocol can be identified by the following parameters: a rooted binary tree τ

with node set V ; a function ` : V → {A,B} (“Alice”,“Bob”) associating each vertex to its type; for

each leaf v ∈ V , a positive numberΛv corresponding to the value output at v ; for each v ∈ V

that is not a leaf and such that `(v) = A (resp. `(v) = B) the set of inputs Sv ⊆ X (resp. Sv ⊆ Y )

such that Alice (resp. Bob) sends a 1 at node v . We represent this succinctly by (τ,`,Λ, {Sv }v∈V ).

An execution of the protocol corresponds to a path of τ from the root to a leaf, whose edges

correspond to the bits sent during the execution. The set of input indices (i , j ) that produce the

same execution, i.e. leading to the same leaf v , correspond to entries of M with the same value

λv , and moreover, without loss of generality, they can be assumed to form a submatrix of M :

indeed, at the end of the protocol, both Alice and Bob can be assumed to know the outcome,

each independently of the input of the other (see [70] for more details). Such submatrices with

constant value are called monochromatic rectangles.

The complexity of the protocol is given by the height h of the tree τ. Hence a deterministic

protocol computing M gives a partition of M in at most 2h monochromatic rectangles. We
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remark that one can obtain a protocol (and a partition in rectangles) for M T given a protocol

for M by just exchanging the roles of Alice and Bob.

The setting of non-deterministic protocols is similar as before, but now Alice and Bob are

allowed to make guesses in their communication, with the requirement that, at the end of

the protocol, they can both independently verify that the outcome corresponds to Mi j for at

least one guess made during the protocol. A nondeterministic protocol is called unambiguous

if for any input i , j , exactly one guess allows to verify the value of Mi j . The complexity of

a nondeterministic protocol is the maximum (over all inputs and guesses) amount of bits

exchanged during the protocol. Nondeterministic protocols of complexity c provide a cover of

M with at most 2c monochromatic rectangles, which is a partition in the case the protocol is

unambiguous. Moreover, each partition of M in N monochromatic rectangles corresponds to

an unambiguous protocol of complexity dlog2 Ne, where Alice guesses the rectangle covering

i , j .

We want to mention another class of communication protocols that is relevant to extended

formulations, namely randomized protocols that compute a (nonnegative) matrix in expec-

tations. These generalize both deterministic and nondeterministic protocols and have been

defined in [29], where they are shown to be equivalent to non-negative factorizations (see

the next section) and to essentially capture the notion of extension complexity. However, our

results do not extend to such general protocols, hence we do not formally define them and we

refer the interested reader to [29].

5.2.2 Extended formulations for a pair of polytopes

Yannakakis’ Theorem has been extended multiple times and generalized (see [29, 35, 81]. In

particular, in [81] the concept of extended formulation is applied to a pair (P,Q), where P,Q

are polytopes with P ⊆ Q ⊆ Rd where P is given as the convex hull of vertices and Q via a

set of linear inequalities. A polyhedron Q ∈Rd ′
is an extension for the pair (P,Q) if there is a

projection π : Rd ′ → Rd such that P ⊆ π(Q) ⊆Q. The concepts of extended formulation and

extension complexity of a pair are defined analogously as in Chapter 1, and clearly these new

definitions coincide with the previous ones if P =Q.

Definition 5.1. Given a polytope Q = conv(v1, . . . , vn) ⊆Rd and a polyhedron Q{x ∈Rd : Ax ≤
b}, where A has m rows, the slack matrix M(P,Q) of the pair (P,Q) is a non-negative m ×n

matrix with M(P,Q)i , j = bi − a>
i v j , i.e., the (i , j )-th entry is the slack of point v j of P with

respect to the i -th inequality in the description of Q.

Given a non-negative matrix M ∈ Rm×n
≥0 , a non-negative factorization of M is an expression

of the form M = TU , where T,U are non-negative matrices. Recall from Chapter 1 that the

non-negative rank of M is the smallest intermediate dimension in a non-negative factorization

of M , and that the extension complexity of a polytope is equal to the non-negative rank of its

slack matrix (Theorem 1.5). This has been generalized to pairs of polytopes in [81]. We report
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below a version of the latter, adapted to our purposes.

Theorem 5.2 (Yannakakis’ Theorem for pairs of polytopes). Given a slack matrix M of a pair

of polytopes (P,Q) of dimension at least 1, the extension complexity of (P,Q) is equal to the

nonnegative rank of M. In particular, if M = TU is a non-negative factorization of M, then

P ⊆ {x : ∃ y ≥ 0 : Ax +T y = b} ⊆Q. (5.1)

Hence, a factorization of the slack matrix of intermediate dimension N gives an extended

formulation of size N (i.e. with N inequalities). However such formulation has as many

equations as the number of rows of A. While at most N of these equation are non-redundant,

there is no clear a priori way of reducing the system of equations without listing all of them.

5.2.3 Protocols and extended formulations

Assume we have a deterministic or an unambiguous protocol of complexity c for computing

a slack matrix M of a polytope P (or equivalently of a pair (P,Q)). We assume for simplicity

that M is a 0/1 matrix, but our arguments extend to the general case. As described above, the

protocol gives a partition of M into at most 2c monochromatic rectangles. This implies that

M = R1 +·· ·+RN , where N ≤ 2c and each Ri is a rank 1 matrix corresponding to a 1-rectangle

(a monochromatic rectangle of value 1). Hence M can be written as a product of two non-

negative (0/1) matrices U ,T of intermediate dimension N , where Ti , j = 1 if the rectangle R j

contains row index i , and Ui , j = 1 if Ri contains column index j . As a consequence of Theorem

5.2, this yields an extended formulation for P . In particular, let P = {x ∈ Rd : Ax ≤ b}, with

A ∈Rm×d , let R be the set of 1-rectangles of M , and, for i = 1, . . . ,m, let ai be the i -th row of A

and Ri ⊂R be the set of rectangles whose row index set includes i . Then the following is an

extended formulation for P :

ai x + ∑
R∈Ri

yR = bi ∀ i = 1, . . . ,m (5.2)

y ≥ 0

Again, the formulation has as many equations as the number of rows of A, and it is not clear

how get rid of non-redundant equations. Here it is important to address the issue of what is our

input, and what assumptions we need in order to get an “efficient" algorithm. The following

discussion is not formal and has the purpose to explain the applicability of the results of this

chapter, while the formal details will be clarified in the next section.

Recall that, in our setting, the matrix A describing P is thought as being exponential in

size, while |R| is polynomial (or quasipolynomial). We assume that we have an implicit

representation of our polytope P of interest, and in particular of A. This assumption is natural

as, without it, we can hardly imagine to have any useful protocol for the slack matrix of P . As
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an example, consider the case, discussed below, of the stable set polytope of perfect graphs, of

which we know the vertices and inequalities without of course having to explicitly list them

(as that would take exponential time).

Recall that a deterministic protocol is identified with a tuple τ,`,Λ, {Sv }v∈V ). While we can

assume that τ,`,Λ are given to us explicitly, the sets Sv have in general exponential size. Hence

we assume to have an implicit description of them, in particular of our rectangles R: notice

that the latter correspond to leaves of τ and can be identified by a sequence of bits exchanged

during the protocol. Knowing the structure of our protocol gives us an implicit representa-

tion of Ri for each i : again, this is a reasonable and basic assumption for approaching the

formulation (5.2) from an algorithmic point of view.

Now, the natural approach to reduce the size of (5.2) is to eliminate redundant equations.

However the structure of the coefficient matrix depends both on A and on the sets Ri ’s, which

can have a very complex behaviour. To get a better understanding of the issue the reader is

encouraged to try on the example of STAB(G), G perfect: the sets Ri ’s have very non-trivial

relations with each other that depend heavily on the graph, and (although one can exploit

some structure as we will see at the end of Section 5.3) we did not manage to directly reduce

the system (5.2) for general perfect graphs. Theorem 5.6 shows how to bypass this problem

for any deterministic protocol. Informally, we shift the problem of eliminating redundant

equations from the system (5.2) to a family of systems {AR x + yR = bR , yR ≥ 0}, one for each

rectangle R produced by the protocol, where yR is a single variable. The latter systems can still

have exponential size, but they are in principle much easier to deal with since their structure

only depends on (a submatrix of) A.

5.2.4 The stable set polytope

The most famous application of protocols to extended formulations is probably the first

one, proved in [100], in the context of stable set polytopes. We recall that for general graphs,

STAB(G) has exponential extension complexity [35, 42] and no “explicit" linear description of

it is known. The clique relaxation of STAB(G) is the following:

QSTAB(G) =
{

x ∈Rd
+ :

∑
v∈C

xv ≤ 1 for all cliques C of G

}
,

Notice that, in the above description, one can restrict to maximal cliques, even though in

the following we will consider all cliques whenever it is convenient. As a consequence of the

equivalence between separation and optimization [50], optimizing over QSTAB(G) is NP-hard

for general graphs. However, the clique relaxation is exact for perfect graphs, for which the

optimization problem is polynomial time solvable (see Chapter 1):

Theorem 5.3 ([16]). A graph G is perfect if and only if STAB(G) = QSTAB(G).

The following result, from [100], has been mentioned in Chapters 1 and 3. Here we state it in a
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more convenient form.

Theorem 5.4. Let G be a graph with n vertices. There is a deterministic protocol of size O(log2 n)

computing the slack matrix of the pair (ST AB(G),QST AB(G)). In particular, there is an ex-

tended formulation of size nO(log(n)) for (ST AB(G),QST AB(G)).

We remark that, when G is perfect, Theorem 5.4 gives a quasipolynomial size extended formu-

lation for ST AB(G). At the end of Section 5.3 we give a modified version of this protocol.

5.3 A general approach

Let us start by recalling the well-known theorem from Balas [4], in a version given by Weltge

([98], Section 3.1.1).

Theorem 5.5. Let P1,P2 ⊂Rd be polytopes, with Pi =πi {y ∈Rmi : Ai y ≤ bi }, where πi :Rmi → d

is a linear map, for i = 1,2. Let P = conv(P1 ∪P2). Then we have:

P = {x ∈Rd : ∃ y1 ∈Rm1 , y2 ∈Rm2 ,λ ∈R : x =π1(y1)+π2(y2),

A1 y1 ≤λb1, A1 y2 ≤ (1−λ)b2,0 ≤λ≤ 1}.

Moreover, the inequality λ≥ 0 (λ≤ 1 respectively) is redundant if P1 (P2) has dimension at least

1. Hence

xc(P ) ≤ xc(P1)+xc(P2)+|{i : dim(Pi ) = 0}|.

We now give our general theorem to efficiently turn deterministic protocols into explicit

extended formulations. Its proof is inspired by [31], where a general method is given to

construct extended formulations for polytopes specified by boolean formulas. While similar in

flavour, it seems that these two results are incomparable, in the sense that one does not follow

from the other. It is possible however that they both fall under a more general framework

which has not been investigated yet.

Note that the following result relies on the existence of a deterministic protocol (τ,`,Λ, {Sv }v∈V ),

but its complexity does not depend on the encoding ofΛ and {Sv }v∈V (see the previous sec-

tion).

Theorem 5.6. Let S be a slack matrix for a couple (P,Q), where P = conv{x∗
1 , . . . , x∗

n } ⊆Rd and

Q = {x ∈ Rd : ai x ≤ bi for i = 1, . . . ,m} are polytopes and for j ∈ [d ], let ` j (resp. u j ) be a valid

upper bound (resp. lower bound) on variable x j in Q. Assume there exists a deterministic

protocol (τ,`,Λ, {Sv }v∈V ) with rectangle set R and complexity c ≤ dlog2 |R|e computing S. For

any R ∈ R, let PR = conv{x∗
j : j is a column of R} and QR = {x ∈ Rd : ai x ≤ bi ∀ i row of

R; ` j ≤ x j ≤ u j for all j ∈ [d ]}.

Suppose we are given τ,` and for each R ∈ R an extended formulation TR for (PR ,QR ). Let

σ(TR ) be the size (number of inequalities) of TR , and σ+(TR ) be the total encoding length of the
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description of TR (including the number of inequalities, variables and equations). Then we

can construct an extended formulation for (P,Q) of size linear in
∑

R∈Rσ(TR ) in time linear in∑
R∈Rσ+(TR ).

Proof. We can assume without loss of generality that τ is a complete binary tree, i.e. each

node of the protocol other than the leaves has exactly two children. Let V be the set of nodes

of τ and v ∈ V . Note that there exists exactly one (non-necessarily monochromatic) rectangle

Sv associated to v , which is given by the pairs (i , j ) such that, on input (i , j ), the execution of

the protocol visits node v . Let us define, for any such Sv , a pair (Pv ,Qv ) as follows:

Pv = conv{x∗
j : j is a column of Sv } and

Qv = {x ∈Rd : ai x ≤ bi ∀ i row of Sv ; ` j ≤ x j ≤ u j for all j ∈ [d ]}.

Clearly, for any v one has Pv ⊆ P ⊆Q ⊆Qv . Notice that, if ρ ∈ V denotes the root of the protocol,

we have Sρ = S,Pρ = P , and Qρ =Q. We now show how to obtain an extended formulation for

the pair (Pv ,Qv ) given extended formulations Tvi ’s for (Pvi ,Qvi ), i = 0,1, where v0 (resp. v1)

are the two children nodes of v .

Assume first that v is labelled A. Then we have Sv =
[

Sv0

Sv1

]
(up to permutation of rows), and

therefore Pv = Pv0 = Pv1 and Qv = Qv0 ∩Qv1 . Hence we have Pv ⊆ π0(Tv0 )∩π1(Tv1 ) ⊆ Qv ,

where πi is a projection from the space of Tvi to Rd . An extended formulation for Tv :=
π0(Tv0 )∩π1(Tv1 ) can be obtained efficiently by juxtaposing the formulations of Tv0 ,Tv1 .

Now assume that v is labelled B . Then we have Sv =
[

Sv0 Sv1

]
(up to permutations of

columns). Hence, Pv = conv{Pv0 ∪Pv1 } and Qv =Qv0 =Qv1 , which implies Pv ⊆ conv{π0(Tv0 )∪
π1(Tv1 )} ⊆ Qv . An extended formulation for Tv := conv{π0(Tv0 )∪π1(Tv1 )} can be obtained

efficiently by applying Theorem 5.5 to the formulations of Tv0 ,Tv1 . Iterating this procedure,

in a bottom-up approach we can obtain an extended formulation for (P,Q) from extended

formulations of (Pv ,Qv ), for each leaf v of the protocol.

We now bound the number of basic operations necessary to obtain our formulation. If Tv =
π0(Tv0 )∩π1(Tv1 ), thenσ+(Tv ) ≤σ+(Tv0 )+σ+(Tv1 ). Consider now Tv = conv{π0(Tv0 )∪π1(Tv1 )}.

From Theorem 5.5 we have σ+(Tv ) ≤ σ+(Tv0 )+σ+(Tv1 )+O(d). Now, since the binary tree

associated to the protocol is complete, it has size linear in the number of leaves (it has actually

2|R|−2 vertices), hence the final formulation Tρ satisfies

σ+(Tρ) ≤ ∑
R∈R

σ+(TR )+O(d) =O

( ∑
R∈R

σ+(TR )

)
,

where the last equation is justified by the fact that we can assume σ+(TR ) ≥ d for any R. The

bound on the size of Tρ is derived in an analogous way. �
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We remark that the theorem above does not guarantee that the formulation has exactly the

form given by the one of the corresponding protocol. Also, let us note that, even for the

special case P =Q, in the proof of the previous theorem we need the generalized version of

Yannakakis’ theorem for pairs of polytopes.

Last, observe that the proof of the previous theorem does not strictly require that we know

extended formulations for nodes of the protocols corresponding to leaves. A similar bottom-

up approach would work starting at any node v of the protocol, as long as we have an extended

formulation for (Pv ,Qv ).

5.3.1 Application to (ST AB(G),QST AB(G))

We now describe how to apply Theorem 5.6 to the protocol from Theorem 5.4 as to obtain an

extended formulation for (ST AB(G),QST AB(G)) in time nO(log(n)). In particular, this gives an

extended formulation for ST AB(G), G perfect within the same time bound.

We first give a modified version of the protocol, stressing a few details that will be important

in later sections. The reader familiar with the original protocol can immediately verify its

correctness. Let v1, . . . , vn be the vertices of G in any order. At the beginning of the protocol,

Alice is given a clique C of G as input and Bob a stable set S, and they want to compute

the entry of the slack matrix of STAB(G) corresponding to C ,S, i.e. to establish whether C ,S

intersect or not.

At each stage of the protocol, the vertices of the current graph G = (V ,E) are partitioned

between low degree L (i.e. at most |V |/2) and high degree H . Suppose first |L| ≥ n/2. Alice

sends (i) the index of the low degree vertex of smallest index in C , or (ii) 0 if no such vertex

exists. In case (i), if vi ∈ S, then C ∩ S 6= ; and the protocol ends; else, G is replaced by

G ∩N (vi ) \ {v j ∈ L : j < i }, where G ∩U denotes the subgraph of G induced by U . In case (ii),

if Bob has no high degree vertex, then C ∩S = ; and the protocol ends, else, G is replaced

by G ∩H . If conversely |L| < n/2, then the protocol proceeds symmetrically to above: Bob

sends (i) the index of the high degree vertex of smallest index in S, or (ii) 0 if no such vertex

exists. In case (i), if vi ∈ C , then C ∩ S 6= ; and the protocol ends; else, G is replaced by

G ∩ N̄ (vi ) \ {v j ∈ H : j < i }. In case (ii), if Alice has no low degree vertex, then C ∩S =; and the

protocol ends, else, G is replaced by G ∩L. Note that at each step the number of vertices of the

graph is decreased by at least half, and C and S do not intersect in any of the vertices that have

been removed.

Now let S be the slack matrix of the pair (ST AB(G),QST AB(G)). Each rectangle R in which

the protocol from Theorem 5.4 partitions S is univocally identified by the list of cliques and of

stable sets corresponding to its rows and columns. With a slight abuse of notation, for a clique

C (resp. stable set S) whose corresponding row is in R, we write C ∈ R (resp. S ∈ R), and we

also write (C ,S) ∈ R. We let PR be the convex hull of stable sets S ∈ R and QR the set of clique

inequalities corresponding to cliques C ∈ R, together with the unit cube constraints.
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We need a fact on the structure of rectangles, for which we introduce some more notation: for

a rectangle R, let CR be the set of vertices sent by Alice and SR the set of vertices sent by Bob

during the corresponding execution of the protocol. Note that CR is a clique and SR is a stable

set.

Observation 5.7. There is exactly one clique C and one stable set S of G such that C =CR and

S = SR . Conversely, given a clique C and a stable set S, there is at most one rectangle R such that

C =CR and S = SR . Notice that |CR |+ |SR | ≤ dlog2 ne for any R ∈R.

Now, assuming we are given the graph G as input, in order to apply Theorem 5.6 we need to

perform two steps:

1. Obtain the tree T with label set ` deriving from the protocol for G.

A simple way is to first enumerate all cliques and stable sets of G of size at most dlog2 ne
and run the protocol on each possible input pair to get R (thanks to Observation 5.7).

Then, derive the structure of T (and `) from the rectangles obtained: for instance, all

the rectangles whose CR begins with vertex v1 are descendants of the child of the root

whose edge is labelled v1, etc.

2. For each leaf of T corresponding to a rectangle R, give a compact extended formulation

TR for the pair (PR ,QR ).

Fix R ∈ R to be a 1-rectangle, the 0-rectangle case being similar. Since R is a non-

negative rank-1 matrix, an extended formulation of (PR ,QR ) is given by

{x ∈Rd , yR ∈R : x(C )+ yR = 1 ∀C ∈ R, yR ≥ 0,0 ≤ x ≤ 1}. (5.3)

We now reduce the equations in the description above, which can be exponentially

many, to a smaller system. For that we need the following fact on the structure of the

rectangles.

Lemma 5.8. Let R = (CR ,SR ) and (C ,S) ∈ R. Then for any C ′ such that CR ⊆C ′ ⊆C and

any S′ such that SR ⊆ S′ ⊆ S we have (C ′,S′) ∈ R.

Proof. Note that a vertex v ∈C \CR is not sent during the protocol on input (C ,S). Hence,

the execution of the protocols on inputs (C ,S) and (C − v,S) coincides. Indeed at every

step Alice chooses the first vertex of low degree in her current clique, and if v is never

chosen, having v in the clique does not affect her choice. Moreover, the choice of Bob

only depends on his current stable set and the vertices previously sent by Alice. In

particular, we have (C \ {v},S) ∈ R. Iterating the argument (and applying the symmetric

for v ∈ S \ SR ) we conclude the proof. �
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Now, we claim that

TR = {x ∈Rd , yR ∈R : x(CR )+ yR = 1

x(CR + v)+ yR = 1 ∀ v ∈V \CR : CR + v ∈ R

yR ≥ 0

0 ≤ x ≤ 1}.

is an extended formulation for (PR ,QR ). It suffices to show that the coefficient vector

of each equation from (5.3) is spanned by the coefficient vectors from equations in

the formulation TR above. Let C ∈ R. For any v ∈C \CR , we have CR + v ∈ R thanks to

Lemma 5.8. Hence we obtain:∑
v∈C \CR

(x(CR + v)+ yR )− (|C \CR |−1)(x(CR )+ yR ) = x(C )+ yR ,

as required.

We conclude by observing that the approach described above proceeds by obtaining the leaves

of T , with an expensive enumeration of cliques and stable sets, and then it reconstructs T .

This takes time Θ(ndlog2 ne). However, one could instead try to construct T from the root, by

distinguishing cases for each possible bit sent by Alice or Bob. This intuition is the basis for

the alternative formulation that we give in the next section.

5.4 Direct derivations

5.4.1 Complement graphs

In order to derive an alternative formulation for STAB(G), G perfect, we exploit the relationship

between a perfect graph and its complement with respect to the stable set polytope. In this

section, we show that an explicit formulation for STAB(G), G perfect, can be easily obtained

from an extended formulation of STAB(Ḡ), keeping a similar size (including the number of

equations).

The next Lemma can be found in [89, Section 65.4].

Lemma 5.9. G is a perfect graph if and only if STAB(G) = {x : x ≥ 0, xT y ≤ 1 ∀ y ∈ STAB(Ḡ)}.

The next Lemma is a restatement of Lemma 3.3 in the form of [98].

Lemma 5.10. Given a non-empty polyhedron Q and γ ∈ R, let P = {x : xT y ≤ γ ∀ y ∈ Q}. If

Q = {y : ∃ z : Ay +B z ≤ b,C y +Dz = d}, then we have that

P = {x : ∃λ≥ 0,µ : ATλ+C Tµ= x,

B Tλ+DTµ= 0,bTλ+d Tµ≤ γ}.
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Hence xc(P ) ≤ xc(Q)+1.

Now a straightforward calculation shows that, for a perfect graph G , STAB(Ḡ) admits an ex-

tended formulation with approximately the same encoding length of an extended formulation

of STAB(G).

Corollary 5.11. Let G be a perfect graph on n vertices such that STAB(Ḡ) admits an extended

formulation Q with r additional variables (i.e. n + r variables in total), m inequalities and k

equations. Then STAB(G) admits an extended formulation with m +k additional variables,

n+r+1 inequalities, n+r equations, which can be written down explicitly given Q. In particular

the size of such formulation is at most one plus the size of Q.

Proof. This follows trivially from Lemma 5.10 and Lemma 5.9. The last sentence is justified by

the fact that, since Q has at least one vertex, m ≥ n + r . �

5.4.2 Alternative formulation for ST AB(G), G perfect

We now present an algorithm that, given a perfect graph G on n vertices, produces an explicit

extended formulation for STAB(G) of size nO(logn), in time bounded by nO(logn). The algorithm

is inspired by Yannakakis’ protocol, even though the formulation obtained is different from

what one would get from the factorization given by such protocol: the additional variables do

not necessarily correspond to rectangles of the slack matrix.

Consider the protocol as described at the end of Section 5.3. Our algorithm can be seen as

performing breadth-first search on the tree corresponding to the protocol for G , and iteratively

decomposing G according to the non-leaf vertices met. When we meet a node v in which Alice

speaks, we consider a different subgraph for each possible message sent (i.e. for each children

of the node), and, as we will show, this corresponds to a partition of the clique constraints

of the formulation of STAB(Gv ). When we meet a node in which Bob speaks, we would like

to keep partitioning our constraints (even though Bob sends information about vertices of

STAB(G)); hence we consider the complement of the current graph, in this way swapping

cliques and stable sets, hence constraints and vertices, and the role of Alice and Bob, and

proceed similarly as before. Notice that, in practice, we can stop exploring a branch as soon

as we meet a subgraph that is small enough (or is a clique, an empty graph, or any graph for

which we can efficiently get an extended formulation). When our search ends, we will go

bottom-up by iteratively adding together the formulations obtained for the children and get a

formulation for the parent (see Lemma 5.12), while using the construction given in Lemma 5.9

whenever a complement graph was taken, until we reach the root and obtain a formulation

for STAB(G).

The details and the proof of correctness of the algorithm are given below. We recall that, for a

vertex v of G , N+(v) = N (v)+ v denotes the inclusive neighbourhood of v .

101



Chapter 5. Extended formulations in output-efficient time from communication
protocols

Lemma 5.12. Let G be a perfect graph on vertex set V = {v1, . . . , vn}, and, fix k with 1 ≤ k ≤ n.

Let Gi be the induced subgraph of G on vertex set Vi = N+(vi ) \ {v1, . . . , vi−1} for i = 1, . . . ,k,

and G0 the induced subgraph of G on vertex set V0 = {vk+1, . . . , vn}. For i = 0, . . . ,k let Pi =
STAB(Gi )×RV \Vi . Then we have

STAB(G) = P0 ∩·· ·∩Pk .

Proof. We first remark that, since by definition vi ∈Vi for i = 1, . . . ,k, and V0 = {vk+1, . . . , vn},

we have V0 ∪·· ·∪Vk =V . Recall that STAB(G) = {x ∈Rn : x(C ) ≤ 1 for C ∈C , x ≥ 0}, where C is

the set of cliques of G . Let us consider the partition C0, . . . ,Ck of C where a clique C is in Ci ,

for i ≥ 1, if {v1, . . . , vi }∩C = {vi }, and is in C0 otherwise. Let x ∈Rn . We have that x ∈ P0∩·· ·∩Pk

if and only if xVi ∈ STAB(Gi ) for i = 1, . . . ,k, with xVi denoting the restriction of x to coordinates

in Vi . We now claim that STAB(Gi ) = {x ∈RVi : x(C ) ≤ 1 for C ∈Ci , x ≥ 0} for i = 0, . . . ,k. Notice

that C ∈Ci implies that C is a clique in Gi , which proves the “⊆” inclusion. For the opposite

inclusion, since each Gi , being an induced subgraph of G , is perfect, it suffices to show that Ci

includes all the maximal cliques of Gi . Let C be a maximal clique of Gi . If i = 0, then C ∈C0

and we are done. If i ≥ 1, then vi ∈C as Vi ⊆ N+(vi ), and C ∈Ci , which concludes the proof of

the claim. Hence we have that x ∈ P0 ∩·· ·∩Pk if and only if x ≥ 0, and x(C ) ≤ 1 for any clique

in C0 ∪·· ·∪Ck =C , but this is equivalent to x ∈ STAB(G). �

We now make a simple observation which is the basis of our decomposition approach.

Observation 5.13. Let P1, . . . ,Pk ∈ Rn be polyhedra with P = P1 ∩ ·· · ∩Pk , and let Qi be an

extended formulation for Pi for i = 1, . . . ,k, i.e. Pi = {x ∈ Rn : ∃ y (i ) ∈ Rri : (x, y (i )) ∈Qi }. Then

P = {x ∈Rn : for i = 1, . . . ,k ∃ y (i ) ∈Rri : (x, y (i )) ∈Qi }.

Theorem 5.14. Let G be a perfect graph on n vertices. Then there is an algorithm that, on input

G, produces an explicit extended formulation of STAB(G) of size nO(logn) in nO(logn) time.

Proof. We argue by induction on n. The base cases for n bounded by a constant are trivial,

as the size of the classical formulation (and the time to obtain it) is constant too. For general

n, Observation 5.13, together with Theorem 5.12, implies that we can obtain an extended

formulation for STAB(G) by adding together extended formulations of STAB(G0), . . . ,STAB(Gk ),

where v1, . . . , vk are the vertices of G with degree at most n/2 and G0, . . . ,Gk are defined as

above. First, assume that k ≥ n/2, hence G0, . . . ,Gk have all size at most n/2+1. By induction,

running the algorithm on G0, . . . ,Gk and then adding all the formulations obtained we get an

extended formulation for STAB(G) of size at most n · (n
2 +1

)c log
(

n
2 +1

)
for some constant c > 0,

but this is at most nc logn (under the assumption, which can be made without loss of generality,

that c ≥ 2). The same bound holds for the total running time. Now if k < n/2, consider the

complement graph Ḡ , for which k ≥ n/2, hence by the previous case the algorithm obtains

a formulation of STAB(Ḡ) of size at most n · (n
2 +1

)c log
(

n
2 +1

)
. We can then use Lemma 5.10

to efficiently obtain a formulation for STAB(G), which by Corollary 5.11 has size at most
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n · (n
2 +1

)c log
(

n
2 +1

)
+ 1 ≤ nc logn (similar calculations work for the number of variables and

equations of the formulation). Again, the same bound holds for the total running time. �

Although in this section we restricted ourselves to perfect graphs for ease of exposition,

we remark that the above algorithm can be used on general graphs, yielding an extended

formulation of (STAB(G),QSTAB(G)). This can be easily seen by following similar arguments

as the ones above, and in particular by noticing that the following holds for any graph G (where

k,G0, . . . ,Gk ,V0, . . . ,Vk are defined as above):

• STAB(G) ⊆ {
x ∈Rn+ : xT y ≤ 1 ∀ y ∈ QSTAB(Ḡ)

}⊆ QSTAB(G);

• STAB(G) ⊆ (
QSTAB(G1)×RV \V1

)∩·· ·∩ (
QSTAB(Gk )×RV \Vk

)= QSTAB(G).

One can see that the above inclusions are strict for non-perfect graphs, for instance for G equal

to the cycle of length five.

We conclude by remarking that the formulation given by Theorem 5.14 can be seen as a more

direct and slightly optimized version of the one given at the end of Section 5.3. Most notably,

while the latter needs to take into account 1-rectangles as well as 0-rectangles, the former only

explores the parts of the tree with lead to 1-rectangles, taking polars and intersections instead

of convex hulls. This can be a significant advantage in practice.

5.4.3 Claw-free perfect graphs and generalizations

Let P = STAB(G) where G is a claw-free, perfect graph on n vertices. As G is perfect, the (non-

trivial part of the) slack matrix of P is the clique vs stable set incidence matrix of G , and can be

computed by the following protocol, given in [29]. Alice, who has a clique C as input, sends a

vertex v ∈ K to Bob, who has a stable set S. Now, since G is claw-free, we have |N (v)∩S| ≤ 2,

and clearly C ⊂ N (v), hence Bob can just send N (v)∩S and Alice knows the intersection C ∩S.

The protocol has complexity at most 3logn +1 hence by applying Theorem 5.2 we get the

following formulation of size O(n3):

x(C )+ ∑
R∈RC

yR = 1 ∀C clique of G (5.4)

y ≥ 0

Where R contains a rectangle for each couple (v,U ), where v ∈V and U ⊂ N (v) with U stable

(i.e., |U | ≤ 2), and RC , following the notation used in (5.2), denotes the set of rectangles

including the row index corresponding to C . Notice that, for the rectangles in R to partition

the slack matrix of STAB(G), we need to specify which vertex is sent from Alice given a certain

103



Chapter 5. Extended formulations in output-efficient time from communication
protocols

clique as input: for this we can simply fix an order of the vertices and assume that Alice sends

the vertex of her clique that is first in the order. Hence the rectangles in RC have form (v,U )

where v is the “first" vertex of C . We now derive a more compact formulation than (5.4), getting

rid of provably redundant equations. Before, we notice that the above protocol can be easily

generalized to perfect K1,t -free graphs for t ≥ 3: in this case the sets R,RC is defined similarly

as before, except that now we have rectangles (v,U ) with |U | ≤ t −1. This yields a formulation

of size O(nt ). We state our result for this more general class of graphs: informally, the only

clique equations that we keep are coming from singletons and edges, obtaining a formulation

with only O(n2) many equations.

Theorem 5.15. Let G(V ,E) be a perfect and K1,t -free graph. Let R,RC as above. Then the

following is an extended formulation for STAB(G):

x(v)+ ∑
R∈Rv

yR = 1 ∀ v ∈V (5.5)

x(e)+ ∑
R∈Re

yR = 1 ∀ e ∈ E

y ≥ 0

Proof. Thanks to the above discussion, we only need to show that, for any clique C of G with

|C | = k ≥ 3, the equation x(C )+∑
R∈RC

yR = 1 is implied by the equations in (5.5). From now on,

fix such C and let v ∈C be the first vertex of C (in the order fixed by the protocol) and consider

the following expression, obtained by summing the non-constant part of the equations relative

to e = uv , for every u ∈C − v : ∑
e=uv :

u∈C−v

(
x(e)+ ∑

R∈Re

yR

)
=

(k −2)x(v)+x(C )+ ∑
e=uv :

u∈C−v

∑
R∈Re∩RC

yR + ∑
R∈Re \RC

yR

Now, recall the slack matrix of STAB(G) has 0/1 entries and a 1-rectangle is determined by a

couple (v,U ), where v is a vertex sent by Alice and U is the set of vertices sent by Bob. If the

rectangle covers a 1-entry (C ,S), then v is the first vertex of C and U = N (v)∩S, with U ∩C =;
(as otherwise (C ,S) would be a 0-entry). Hence, we can derive Re = {(v,U ) : U ⊂ N (v),U ∈
S ,u 6∈ U } for e = (u, v), and RC = {(v,U ) : U ⊂ N (v),U ∈ S ,U ∩C = ;}, where S denotes

the family of the stable sets of G . Hence RC ⊂Re for e ⊂C . We can then rewrite the above

expression as:

(k −2)x(v)+x(C )+ (k −1)
∑

R∈RC

yR + ∑
e=uv :
u∈C

∑
U⊂N (v)−u

U∈S ,U∩C 6=;

yv,U =

(k −2)x(v)+x(C )+ (k −1)
∑

R∈RC

yR + (k −2)
∑

U⊂N (v)
U∈S ,U∩C 6=;

yv,U . (5.6)
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5.4. Direct derivations

Now, consider the right-hand side of the equation corresponding to {v}:

x(v)+ ∑
R∈Rv

yR = x(v)+ ∑
U⊂N (v),U∈S

yv,U .

Subtracting k −2 times the latter from 5.6 we obtain x(C )+∑
R∈RC

yR , which is the right-hand

side that we wanted. Since we manipulated the non-constant part of equations whose space

of solutions is non-empty, the corresponding constant part must be coherent (i.e. equal to 1)

and we are done. �

5.4.4 Comparability graphs

Let G be a comparability graph, and let (D,≤D ) its underlying partial order. A clique (resp.

stable set) in G corresponds to a chain (resp. antichain) in D. In [100], it is described an

unambiguous nondeterministic protocol for the slack matrix of STAB(G), which we now recall.

Given a clique C = {v1, . . . , vk } with v1 ≤ ·· · ≤ vk in D , and a stable set S disjoint from C , there

are three cases: 1) every node of C precedes some node of S (equivalently, vk does); 2) no node

of C precedes a node of S (equivalently, v1 does not precede any node of S); 3) there is an i

such that vi precedes some node of i , and vi+1 does not. Alice, given C , guesses which of the

three cases applies and sends to Bob the certificate (vk ,L) (for last) in case 1), (v1,F ) (for first)

in case 2) and (vi , v j ) in case 3). This protocol yields a factorization of the slack matrix, hence

an extended formulation for STAB(G) of the usual kind:

x(C )+ y(v1,F )+ y(v1, v2)+·· ·+ y(vk ,L) = 1 ∀C = {v1, . . . , vk } ∈G (5.7)

x, y ≥ 0

Lemma 5.16. Let G(V ,E) be a comparability graph with order ≤D , then the following is an

extended formulation for STAB(G):

x(v)+ y(v,F )+ y(v,L) = 1 ∀ v ∈V (5.8)

x(u)+x(v)+ y(u,F )+ y(u, v)+ y(v,L) = 1 ∀ u, v ∈V : u ≤D v

x, y ≥ 0.

Proof. Let (x, y) be a point of (5.8), and C = {v1, . . . , vk } a clique of G with v1 ≤D · · · ≤D vk , k ≥ 3.

Manipulating the equation of (5.8), we have that for i = 2, . . . ,k, x(vi ) = y(vi−1,L)−y(vi−1, vi )−
y(vi ,L). Hence:

x(C ) =
x(v1)+ y(v1,L)− y(v1, v2)− y(v2,L)+·· ·+ y(vk−1,L)− y(vk−1, vk )− y(vk ,L)

= x(v1)+ y(v1,L)− y(v1, v2)−·· ·− y(vk−1, vk )− y(vk ,L) ≤ 1.

�
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Chapter 5. Extended formulations in output-efficient time from communication
protocols

Remark: A explicit extended formulation for the stable set polytopes of comparability graphs

has been given in [74] by Lovasz. Both this formulation and the one given by us have quadratic

size in the number of vertices of the graph, however Lovasz’s formulation has only a linear

number of variables.
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6 Conclusion

In this thesis we examined the subject of 2-level polytopes from various perspectives. Our

purpose was to draw attention to interesting open problems that are, in our opinion, not

studied enough, and of course to describe the progress we made toward their solution. We

would now like to conclude this thesis by pointing out the main research directions that stem

from our work.

The reason we first started to work on 2-level polytopes was our interest in Conjecture 2.1.

Even though we succeeded to prove it for essentially all combinatorial classes we could identify,

the general case remains open: what bound can we prove on the product of the number of

vertices and facets of any 2-level polytope? The only bound that we know is 4d for dimension

d , and, as argued in Section ??, this is not tight. This is not only a problem of intrinsic interest,

but it might be the most approachable open question on general 2-level polytopes, hopefully

paving the way for the harder questions we are now going to describe.

The question on the extension complexity of 2-level polytopes is probably the most meaningful

and fascinating that we approached, for the various connections already described in the

introduction. In Chapter 3, Theorem 3.11 we give the first and only known non-trivial lower

bound on the extension complexity of a 2-level polytope, in particular the stable set polytope

of some bipartite graphs. While this only improves by a logarithmic factor on the trivial

bound, we hope that the same or a similar technique can be applied to other graphs to obtain

stronger bounds. Of course other classes of 2-level polytopes might be more promising for this

purpose, especially if one aims at proving superpolynomial lower bounds. However it is worth

to notice that there is no clear candidate for this task. A look at the various classes of 2-level

polytopes studied in Chapter 2 reveals that most of them have a polynomial number of facets.

An exception is the class of min up/down polytopes (see Section 2.3.3 or [72]): however it is

known and not too hard to see (but not published as far as we know) that such polytopes have

polynomial extension complexity. Hence so far we are not aware of any 2-level polytope that

comes from a combinatorial context and could have high extension complexity (apart from

the stable set polytopes of perfect graphs). It seems that to prove a strong lower bound one

would have to resort to less structured polytopes, arising for instance from slices of the unit

cube or from the “hypergraph embedding" given in [10], which has a combinatorial flavour
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Chapter 6. Conclusion

although it is general enough to describe all 2-level polytopes. On the other hand, it might

very well be that a subexponential upper bound holds for the extension complexity of all

2-level polytopes. This would generalize Yannakakis’ quasipolynomial bound for stable set

polytopes of perfect graphs (Theorem 5.4). This direction has been considered by researchers

who studied 2-level polytopes, but the current understanding of the subject still seems too

poor: it is not clear at all how, for instance, a generalization of Yannakakis’ protocol could be

applied to all 2-level polytopes.

A different direction that might contribute to the above question, while being interesting on its

own, stems from the problem of efficiently recognizing 0/1 slack matrices, which is studied in

Chapter 4. In particular we feel that our decomposition approach via the operation of k-sum

deserves further investigation. While we could only prove its successful application for the

special case of 2-level matroid polytopes, the operation of k-sum might prove useful in more

general contexts. For a moment, while working on the main results of the chapter, we consid-

ered the following bold conjecture: every 2-level polytope is obtained via k-sum from lower

dimensional 2-level polytopes, or belongs to one of a few “basic” classes, which are “simple"

and relatively well understood. This is inspired by the numerous decomposition theorems for

perfect graphs [15] (while their stable set polytopes might be considered as one of the basic

classes). Notice that proving such a result would have at least two relevant consequences: in

light of Corollary 4.12, it would imply a bound on the extension complexity of 2-level poly-

topes; thanks to Theorem 4.25, it would imply an efficient algorithm for recognizing 0/1 slack

matrices. Of course, as the numerical experiments in Section 4.4.3 show, such a statement

seems to be false: there are many 2-level polytopes that are not k-sums, and it seems unlikely

that they all belong to some special class. However, the same data suggests that k-sums do play

a significant role in the context of 2-level polytopes, hence giving hope that introducing some

new, maybe more complex operation might finally lead to a decomposition result. This would

dramatically improve our understanding of the structure of 2-level polytopes, and might settle

the most important questions we have on them.

Finally, Chapter 5 might leave the reader to wonder about many questions, possibly more than

the rest of the thesis. We would first like to point out that, although we only apply our results to

stable set polytopes of perfect graphs, Theorem 5.6 lends itself to applications well beyond the

realm of 2-level polytopes. In particular it could be applied to non-2-level stable set polytopes.

Recall that the algorithms described in Sections 5.3.1 and 5.4.2 give quasipolynomial extended

formulations for (STAB(G),QSTAB(G)), for any graph G . How strong are these relaxations for

non-perfect graphs? Interestingly, both STAB(G) and QSTAB(G) are in general NP-hard to

optimize over, while our formulations are of quasipolynomial size in the worst case.

One last issue that is worth mentioning concerns the relationship between deterministic

communication complexity and 2-level polytopes. As outlined in Chapter 1, the log-rank

conjecture is a fundamental open problem that concerns the deterministic communication

complexity of boolean matrices [75]. Since 2-level polytopes have 0/1 slack matrices (Ob-

servation 1.4), the bound of the conjecture would imply a 2polylog(d) bound on the extension
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complexity of d-dimensional 2-level polytopes. Moreover, such a bound would come from a

deterministic protocol. The best partial progress on the conjecture is due to Lovett [75], and it

implies a bound of 2
O

(p
d

)
. This is the best upper bound currently known for 2-level polytopes,

suggesting that (deterministic) communication complexity might be the right perspective to

approach the problem. As a side notice we mention that, thanks to Theorem 5.6, this bound

might in principle be turned into an explicit extended formulation for all 2-level polytopes, but

Lovett’s approach seems inherently non-constructive, not giving any explicit protocol to start

with. Overall, it seems natural to ask what is really the role of deterministic protocols in the

context of boolean slack matrices. In [29] it is shown that no deterministic protocol can yield a

polynomial extended formulation for the spanning tree polytope, while a simple randomized

protocol yields a cubic size formulation similar to Martin’s formulation [79]. Is there a 2-level

polytope exhibiting a similar gap, or are deterministic protocols as powerful as randomized

ones when it comes to boolean matrices? We believe that this and similar questions are worth

asking in order to improve our understanding on the subject, and that deep answers wait to

be brought to light.
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A An appendix

A.1 The polytopes from Proposition 2.11, Chapter 2

The following are the polymake vertex descriptions of the two 8-dimensional polytopes from

Proposition 2.11: the min up/down polytope P8(2) is denoted by $P, and the Hansen polytope

Hans(P7) of the path on 7 nodes P7 is denoted by $H.

$P = new Polytope(VERTICES=> [

[1, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 0, 0, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 0],

[1, 0, 0, 0, 0, 0, 0, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0],

[1, 0, 0, 0, 0, 0, 1, 1, 1], [1, 1, 1, 1, 1, 1, 0, 0, 0],

[1, 0, 0, 0, 0, 0, 1, 1, 0], [1, 1, 1, 1, 1, 1, 0, 0, 1],

[1, 0, 0, 0, 0, 1, 1, 1, 1], [1, 1, 1, 1, 1, 0, 0, 0, 0],

[1, 0, 0, 0, 0, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0, 0, 0, 1],

[1, 0, 0, 0, 0, 1, 1, 0, 0], [1, 1, 1, 1, 1, 0, 0, 1, 1],

[1, 0, 0, 0, 1, 1, 1, 1, 1], [1, 1, 1, 1, 0, 0, 0, 0, 0],

[1, 0, 0, 0, 1, 1, 1, 1, 0], [1, 1, 1, 1, 0, 0, 0, 0, 1],

[1, 0, 0, 0, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 0, 0, 1, 1],

[1, 0, 0, 0, 1, 1, 0, 0, 0], [1, 1, 1, 1, 0, 0, 1, 1, 1],

[1, 0, 0, 0, 1, 1, 0, 0, 1], [1, 1, 1, 1, 0, 0, 1, 1, 0],

[1, 0, 0, 1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0, 0, 0, 0],

[1, 0, 0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 0, 0, 0, 0, 0, 1],

[1, 0, 0, 1, 1, 1, 1, 0, 0], [1, 1, 1, 0, 0, 0, 0, 1, 1],

[1, 0, 0, 1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0, 1, 1, 1],

[1, 0, 0, 1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 0, 0, 1, 1, 0],

[1, 0, 0, 1, 1, 0, 0, 0, 0], [1, 1, 1, 0, 0, 1, 1, 1, 1],

[1, 0, 0, 1, 1, 0, 0, 0, 1], [1, 1, 1, 0, 0, 1, 1, 1, 0],

[1, 0, 0, 1, 1, 0, 0, 1, 1], [1, 1, 1, 0, 0, 1, 1, 0, 0],

[1, 0, 1, 1, 1, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0, 0, 0, 0],

[1, 0, 1, 1, 1, 1, 1, 1, 0], [1, 1, 0, 0, 0, 0, 0, 0, 1],
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[1, 0, 1, 1, 1, 1, 1, 0, 0], [1, 1, 0, 0, 0, 0, 0, 1, 1],

[1, 0, 1, 1, 1, 1, 0, 0, 0], [1, 1, 0, 0, 0, 0, 1, 1, 1],

[1, 0, 1, 1, 1, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 1, 1, 0],

[1, 0, 1, 1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1, 1, 1, 1],

[1, 0, 1, 1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 0, 1, 1, 1, 0],

[1, 0, 1, 1, 1, 0, 0, 1, 1], [1, 1, 0, 0, 0, 1, 1, 0, 0],

[1, 0, 1, 1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 1, 1, 1, 1, 1],

[1, 0, 1, 1, 0, 0, 0, 0, 1], [1, 1, 0, 0, 1, 1, 1, 1, 0],

[1, 0, 1, 1, 0, 0, 0, 1, 1], [1, 1, 0, 0, 1, 1, 1, 0, 0],

[1, 0, 1, 1, 0, 0, 1, 1, 1], [1, 1, 0, 0, 1, 1, 0, 0, 0],

[1, 0, 1, 1, 0, 0, 1, 1, 0], [1, 1, 0, 0, 1, 1, 0, 0, 1]] );

$H= new Polytope(VERTICES=> [

[1, 1, 0, 0, 0, 0, 0, 0, 0], [1, -1, 0, 0, 0, 0, 0, 0, 0],

[1, 1, 0, 0, 0, 0, 0, 0, 1], [1, -1, 0, 0, 0, 0, 0, 0, -1],

[1, 1, 0, 0, 0, 0, 0, 1, 0], [1, -1, 0, 0, 0, 0, 0, -1, 0],

[1, 1, 0, 0, 0, 0, 1, 0, 0], [1, -1, 0, 0, 0, 0, -1, 0, 0],

[1, 1, 0, 0, 0, 0, 1, 0, 1], [1, -1, 0, 0, 0, 0, -1, 0, -1],

[1, 1, 0, 0, 0, 1, 0, 0, 0], [1, -1, 0, 0, 0, -1, 0, 0, 0],

[1, 1, 0, 0, 0, 1, 0, 0, 1], [1, -1, 0, 0, 0, -1, 0, 0, -1],

[1, 1, 0, 0, 0, 1, 0, 1, 0], [1, -1, 0, 0, 0, -1, 0, -1, 0],

[1, 1, 0, 0, 1, 0, 0, 0, 0], [1, -1, 0, 0, -1, 0, 0, 0, 0],

[1, 1, 0, 0, 1, 0, 0, 0, 1], [1, -1, 0, 0, -1, 0, 0, 0, -1],

[1, 1, 0, 0, 1, 0, 0, 1, 0], [1, -1, 0, 0, -1, 0, 0, -1, 0],

[1, 1, 0, 0, 1, 0, 1, 0, 0], [1, -1, 0, 0, -1, 0, -1, 0, 0],

[1, 1, 0, 0, 1, 0, 1, 0, 1], [1, -1, 0, 0, -1, 0, -1, 0, -1],

[1, 1, 0, 1, 0, 0, 0, 0, 0], [1, -1, 0, -1, 0, 0, 0, 0, 0],

[1, 1, 0, 1, 0, 0, 0, 0, 1], [1, -1, 0, -1, 0, 0, 0, 0, -1],

[1, 1, 0, 1, 0, 0, 0, 1, 0], [1, -1, 0, -1, 0, 0, 0, -1, 0],

[1, 1, 0, 1, 0, 0, 1, 0, 0], [1, -1, 0, -1, 0, 0, -1, 0, 0],

[1, 1, 0, 1, 0, 0, 1, 0, 1], [1, -1, 0, -1, 0, 0, -1, 0, -1],

[1, 1, 0, 1, 0, 1, 0, 0, 0], [1, -1, 0, -1, 0, -1, 0, 0, 0],

[1, 1, 0, 1, 0, 1, 0, 0, 1], [1, -1, 0, -1, 0, -1, 0, 0, -1],

[1, 1, 0, 1, 0, 1, 0, 1, 0], [1, -1, 0, -1, 0, -1, 0, -1, 0],

[1, 1, 1, 0, 0, 0, 0, 0, 0], [1, -1, -1, 0, 0, 0, 0, 0, 0],

[1, 1, 1, 0, 0, 0, 0, 0, 1], [1, -1, -1, 0, 0, 0, 0, 0, -1],

[1, 1, 1, 0, 0, 0, 0, 1, 0], [1, -1, -1, 0, 0, 0, 0, -1, 0],

[1, 1, 1, 0, 0, 0, 1, 0, 0], [1, -1, -1, 0, 0, 0, -1, 0, 0],

[1, 1, 1, 0, 0, 0, 1, 0, 1], [1, -1, -1, 0, 0, 0, -1, 0, -1],

[1, 1, 1, 0, 0, 1, 0, 0, 0], [1, -1, -1, 0, 0, -1, 0, 0, 0],

[1, 1, 1, 0, 0, 1, 0, 0, 1], [1, -1, -1, 0, 0, -1, 0, 0, -1],

[1, 1, 1, 0, 0, 1, 0, 1, 0], [1, -1, -1, 0, 0, -1, 0, -1, 0],
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A.2. The polytope from Section 2.6.5

[1, 1, 1, 0, 1, 0, 0, 0, 0], [1, -1, -1, 0, -1, 0, 0, 0, 0],

[1, 1, 1, 0, 1, 0, 0, 0, 1], [1, -1, -1, 0, -1, 0, 0, 0, -1],

[1, 1, 1, 0, 1, 0, 0, 1, 0], [1, -1, -1, 0, -1, 0, 0, -1, 0],

[1, 1, 1, 0, 1, 0, 1, 0, 0], [1, -1, -1, 0, -1, 0, -1, 0, 0],

[1, 1, 1, 0, 1, 0, 1, 0, 1], [1, -1, -1, 0, -1, 0, -1, 0, -1]] );

A.2 The polytope from Section 2.6.5

The following is the polymake inequality description for the 12-dimensional polytope from

Example 2.6.5.

$c= new Polytope(INEQUALITIES=>[

[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1] ,
[1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, -1, -1] ,
[0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1] ,
[1, -1, 0, -1, 0, -1, -1, -1, 0, -1, -1, 0, -1] ,
[0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1] ,
[1, 0, 0, 0, 0, -1, 0, 0, 0, -1, -1, 0, -1] ,
[0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] ,
[1, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0] ,
[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ,
[1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ,
[0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1] ,
[1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, -1, -1] ,
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] ,
[1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0] ,
[0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1] ,
[1, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1] ,
[0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0] ,
[1, -1, -1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0] ,
[0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0] ,
[1, -1, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, 0] ,
[0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] ,
[1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1] ,
[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1] ,
[1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, -1, -1] ,
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ,
[1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ,
[0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0] ,
[1, -1, -1, -1, 0, 0, 0, 0, 0, -1, -1, 0, 0] ,
[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ,
[1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ,
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[0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1] ,
[1, -1, -1, -1, 0, 0, -1, -1, -1, -1, 0, -1, -1] ]);
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